Solveeit Logo

Question

Question: Let's consider two statements. $S_1$ : 3cosx-4 sin x=5 sin($\theta$-x), where tan $\theta$ = $\frac{...

Let's consider two statements. S1S_1 : 3cosx-4 sin x=5 sin(θ\theta-x), where tan θ\theta = 43\frac{4}{3} S2S_2:3 cos x-4 sin x = 5 cos(θ\theta+ x), where tan θ\theta = 34\frac{3}{4}

A

Only S1S_1 is true

B

Only S2S_2 is true

C

Both S1S_1 and S2S_2 are true

D

Both S1S_1 and S2S_2 are false

Answer

Both S1S_1 and S2S_2 are false

Explanation

Solution

We analyze each statement separately.

Statement S1S_1: 3cosx4sinx=5sin(θx)3\cos x - 4\sin x = 5\sin(\theta - x), where tanθ=43\tan \theta = \frac{4}{3}.

We can express acosx+bsinxa\cos x + b\sin x in the form Rsin(ϕx)R\sin(\phi - x). Let 3cosx4sinx=Rsin(ϕx)3\cos x - 4\sin x = R\sin(\phi - x). Expanding Rsin(ϕx)=R(sinϕcosxcosϕsinx)R\sin(\phi - x) = R(\sin\phi\cos x - \cos\phi\sin x). Comparing coefficients with 3cosx4sinx3\cos x - 4\sin x: Rsinϕ=3R\sin\phi = 3 Rcosϕ=4R\cos\phi = 4

Squaring and adding these equations gives R2(sin2ϕ+cos2ϕ)=32+42R^2(\sin^2\phi + \cos^2\phi) = 3^2 + 4^2, so R2=25R^2 = 25, and R=5R=5 (taking R>0R>0). From Rsinϕ=3R\sin\phi = 3 and Rcosϕ=4R\cos\phi = 4, we get tanϕ=RsinϕRcosϕ=34\tan\phi = \frac{R\sin\phi}{R\cos\phi} = \frac{3}{4}. Thus, 3cosx4sinx=5sin(ϕx)3\cos x - 4\sin x = 5\sin(\phi - x) where tanϕ=34\tan\phi = \frac{3}{4}.

Statement S1S_1 claims 3cosx4sinx=5sin(θx)3\cos x - 4\sin x = 5\sin(\theta - x) where tanθ=43\tan \theta = \frac{4}{3}. For S1S_1 to be true, we would need 5sin(ϕx)=5sin(θx)5\sin(\phi - x) = 5\sin(\theta - x) for all xx, with tanϕ=3/4\tan\phi = 3/4 and tanθ=4/3\tan\theta = 4/3. This implies ϕ=θ+nπ\phi = \theta + n\pi for some integer nn. However, if tanϕ=3/4\tan\phi = 3/4 and tanθ=4/3\tan\theta = 4/3, then ϕθ+nπ\phi \neq \theta + n\pi. Therefore, S1S_1 is false.

Statement S2S_2: 3cosx4sinx=5cos(θ+x)3\cos x - 4\sin x = 5\cos(\theta + x), where tanθ=34\tan \theta = \frac{3}{4}.

Let 3cosx4sinx=Rcos(ϕ+x)3\cos x - 4\sin x = R\cos(\phi + x). Expanding Rcos(ϕ+x)=R(cosϕcosxsinϕsinx)R\cos(\phi + x) = R(\cos\phi\cos x - \sin\phi\sin x). Comparing coefficients with 3cosx4sinx3\cos x - 4\sin x: Rcosϕ=3R\cos\phi = 3 Rsinϕ=4R\sin\phi = 4

Again, R=5R=5. From Rcosϕ=3R\cos\phi = 3 and Rsinϕ=4R\sin\phi = 4, we get tanϕ=RsinϕRcosϕ=43\tan\phi = \frac{R\sin\phi}{R\cos\phi} = \frac{4}{3}. Thus, 3cosx4sinx=5cos(ϕ+x)3\cos x - 4\sin x = 5\cos(\phi + x) where tanϕ=43\tan\phi = \frac{4}{3}.

Statement S2S_2 claims 3cosx4sinx=5cos(θ+x)3\cos x - 4\sin x = 5\cos(\theta + x) where tanθ=34\tan \theta = \frac{3}{4}. For S2S_2 to be true, we would need 5cos(ϕ+x)=5cos(θ+x)5\cos(\phi + x) = 5\cos(\theta + x) for all xx, with tanϕ=4/3\tan\phi = 4/3 and tanθ=3/4\tan\theta = 3/4. This implies ϕ+x=±(θ+x)+2kπ\phi + x = \pm (\theta + x) + 2k\pi. If ϕ+x=θ+x+2kπ\phi + x = \theta + x + 2k\pi, then ϕ=θ+2kπ\phi = \theta + 2k\pi, which implies tanϕ=tanθ\tan\phi = \tan\theta. This is not true as 4/33/44/3 \neq 3/4. If ϕ+x=(θ+x)+2kπ\phi + x = -(\theta + x) + 2k\pi, then 2x=ϕθ+2kπ2x = -\phi - \theta + 2k\pi, which is not true for all xx. Therefore, S2S_2 is false.

Since both S1S_1 and S2S_2 are false, the correct option is (d).