Solveeit Logo

Question

Question: Let x, y, z are distinct positive integers and $m = (\frac{x^2 + y^2 + z^2}{x + y + z})^{(x+y+z)}$,...

Let x, y, z are distinct positive integers and

m=(x2+y2+z2x+y+z)(x+y+z)m = (\frac{x^2 + y^2 + z^2}{x + y + z})^{(x+y+z)}, n=xxyyzzn = x^x y^y z^z, P=(x+y+z3)(x+y+z)P = (\frac{x + y + z}{3})^{(x+y+z)}, then

A

m > n

B

n > p

C

m < n

D

n < p

Answer

(A), (B)

Explanation

Solution

Let S=x+y+zS = x+y+z.

m=(x2+y2+z2S)Sm = (\frac{x^2+y^2+z^2}{S})^S, n=xxyyzzn = x^x y^y z^z, P=(S3)SP = (\frac{S}{3})^S.

Since x,y,zx, y, z are distinct positive integers, S>0S > 0.

Compare the bases of mm and PP: x2+y2+z2S\frac{x^2+y^2+z^2}{S} and S3\frac{S}{3}.

The inequality x2+y2+z2x+y+z>x+y+z3\frac{x^2+y^2+z^2}{x+y+z} > \frac{x+y+z}{3} holds because (xy)2+(yz)2+(zx)2>0(x-y)^2+(y-z)^2+(z-x)^2 > 0 for distinct x,y,zx, y, z.

Raising to the power SS, we get m>Pm > P.

Use the weighted AM-GM inequality with values x,y,zx, y, z and weights x,y,zx, y, z:

xx+yy+zzx+y+z>(xxyyzz)1x+y+z\frac{x \cdot x + y \cdot y + z \cdot z}{x+y+z} > (x^x y^y z^z)^{\frac{1}{x+y+z}} for distinct x,y,zx, y, z.

Raising to the power SS, we get m>nm > n.

Use Jensen's inequality for the convex function f(t)=tlogtf(t) = t \log t with weights 1,1,11, 1, 1:

xlogx+ylogy+zlogz3x+y+z3log(x+y+z3)\frac{x \log x + y \log y + z \log z}{3} \ge \frac{x+y+z}{3} \log(\frac{x+y+z}{3}).

This simplifies to (xxyyzz)1/3(x+y+z3)(x+y+z)/3(x^x y^y z^z)^{1/3} \ge (\frac{x+y+z}{3})^{(x+y+z)/3}.

Raising to the power 3, we get xxyyzz(x+y+z3)x+y+zx^x y^y z^z \ge (\frac{x+y+z}{3})^{x+y+z}.

This is nPn \ge P. Strict inequality holds for distinct x,y,zx, y, z, so n>Pn > P.

Combining the results, m>n>Pm > n > P.

Therefore, m>nm > n and n>Pn > P.