Solveeit Logo

Question

Question: Let g(x) = $\begin{cases} 2x + \tan^{-1}x + a, -\infty < x \leq 0 \\ x^3+x^2+bx, \quad 0 < x < \inf...

Let g(x) =

{2x+tan1x+a,<x0x3+x2+bx,0<x<\begin{cases} 2x + \tan^{-1}x + a, -\infty < x \leq 0 \\ x^3+x^2+bx, \quad 0 < x < \infty \end{cases}

If g(x) is differentiable for all x(,)x \in (-\infty, \infty), then (a2+b2a^2 + b^2) is equal to:

A

20

B

13

C

9

D

4

Answer

9

Explanation

Solution

To ensure that g(x)g(x) is differentiable for all x(,)x \in (-\infty, \infty), it must satisfy two conditions at x=0x=0:

  1. Continuity at x=0x=0.
  2. Differentiability at x=0x=0.

Step 1: Ensure continuity at x=0x=0

For g(x)g(x) to be continuous at x=0x=0, we must have limx0g(x)=limx0+g(x)=g(0)\lim_{x \to 0^-} g(x) = \lim_{x \to 0^+} g(x) = g(0).

Left-hand limit: limx0g(x)=limx0(2x+tan1x+a)=2(0)+tan1(0)+a=0+0+a=a\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} (2x + \tan^{-1}x + a) = 2(0) + \tan^{-1}(0) + a = 0 + 0 + a = a.

Right-hand limit: limx0+g(x)=limx0+(x3+x2+bx)=(0)3+(0)2+b(0)=0+0+0=0\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x^3+x^2+bx) = (0)^3+(0)^2+b(0) = 0 + 0 + 0 = 0.

Value of the function at x=0x=0: g(0)=2(0)+tan1(0)+a=ag(0) = 2(0) + \tan^{-1}(0) + a = a.

For continuity, these values must be equal: a=0a = 0.

Step 2: Ensure differentiability at x=0x=0

For g(x)g(x) to be differentiable at x=0x=0, the left-hand derivative (LHD) must be equal to the right-hand derivative (RHD).

First, find the derivative of each piece of the function: For x<0x < 0, g(x)=2x+tan1x+ag(x) = 2x + \tan^{-1}x + a. g(x)=ddx(2x+tan1x+a)=2+11+x2g'(x) = \frac{d}{dx}(2x + \tan^{-1}x + a) = 2 + \frac{1}{1+x^2}.

For x>0x > 0, g(x)=x3+x2+bxg(x) = x^3+x^2+bx. g(x)=ddx(x3+x2+bx)=3x2+2x+bg'(x) = \frac{d}{dx}(x^3+x^2+bx) = 3x^2 + 2x + b.

Now, calculate the LHD and RHD at x=0x=0: Left-hand derivative at x=0x=0: LHD=limx0g(x)=2+11+(0)2=2+1=3LHD = \lim_{x \to 0^-} g'(x) = 2 + \frac{1}{1+(0)^2} = 2 + 1 = 3.

Right-hand derivative at x=0x=0: RHD=limx0+g(x)=3(0)2+2(0)+b=0+0+b=bRHD = \lim_{x \to 0^+} g'(x) = 3(0)^2 + 2(0) + b = 0 + 0 + b = b.

For differentiability, LHD = RHD: 3=b3 = b.

Step 3: Calculate a2+b2a^2 + b^2

From Step 1, we found a=0a = 0. From Step 2, we found b=3b = 3.

Now, substitute these values into the expression a2+b2a^2 + b^2: a2+b2=(0)2+(3)2=0+9=9a^2 + b^2 = (0)^2 + (3)^2 = 0 + 9 = 9.