Question
Question: Let g(x) = $\begin{cases} 2x + \tan^{-1}x + a, -\infty < x \leq 0 \\ x^3+x^2+bx, \quad 0 < x < \inf...
Let g(x) =
{2x+tan−1x+a,−∞<x≤0x3+x2+bx,0<x<∞
If g(x) is differentiable for all x∈(−∞,∞), then (a2+b2) is equal to:

20
13
9
4
9
Solution
To ensure that g(x) is differentiable for all x∈(−∞,∞), it must satisfy two conditions at x=0:
- Continuity at x=0.
- Differentiability at x=0.
Step 1: Ensure continuity at x=0
For g(x) to be continuous at x=0, we must have limx→0−g(x)=limx→0+g(x)=g(0).
Left-hand limit: limx→0−g(x)=limx→0−(2x+tan−1x+a)=2(0)+tan−1(0)+a=0+0+a=a.
Right-hand limit: limx→0+g(x)=limx→0+(x3+x2+bx)=(0)3+(0)2+b(0)=0+0+0=0.
Value of the function at x=0: g(0)=2(0)+tan−1(0)+a=a.
For continuity, these values must be equal: a=0.
Step 2: Ensure differentiability at x=0
For g(x) to be differentiable at x=0, the left-hand derivative (LHD) must be equal to the right-hand derivative (RHD).
First, find the derivative of each piece of the function: For x<0, g(x)=2x+tan−1x+a. g′(x)=dxd(2x+tan−1x+a)=2+1+x21.
For x>0, g(x)=x3+x2+bx. g′(x)=dxd(x3+x2+bx)=3x2+2x+b.
Now, calculate the LHD and RHD at x=0: Left-hand derivative at x=0: LHD=limx→0−g′(x)=2+1+(0)21=2+1=3.
Right-hand derivative at x=0: RHD=limx→0+g′(x)=3(0)2+2(0)+b=0+0+b=b.
For differentiability, LHD = RHD: 3=b.
Step 3: Calculate a2+b2
From Step 1, we found a=0. From Step 2, we found b=3.
Now, substitute these values into the expression a2+b2: a2+b2=(0)2+(3)2=0+9=9.