Solveeit Logo

Question

Question: In an octagon ABCDEFGH of equal side, what is the sum of $\overline{AB}+\overline{AC}+\overline{AD}+...

In an octagon ABCDEFGH of equal side, what is the sum of AB+AC+AD+AE+AF+AG+AH\overline{AB}+\overline{AC}+\overline{AD}+\overline{AE}+\overline{AF}+\overline{AG}+\overline{AH} if, AO=2i^+3j^4k^\overline{AO}=2\hat{i}+3\hat{j}-4\hat{k} ?

A

16i^24j^+32k^-16\hat{i}-24\hat{j}+32\hat{k}

B

16i^+24j^32k^16\hat{i}+24\hat{j}-32\hat{k}

C

16i^+24j^+32k^16\hat{i}+24\hat{j}+32\hat{k}

D

16i^24j^16\hat{i}-24\hat{j}

Answer

16i^+24j^32k^16\hat{i}+24\hat{j}-32\hat{k}

Explanation

Solution

Let O be the center of the regular octagon. The sum of vectors from the center to the vertices is zero: i=AHOi=0\sum_{i=A}^H \overline{Oi} = \vec{0}.

The sum of vectors from vertex A to other vertices is S=i=BHAiS = \sum_{i=B}^H \overline{Ai}.

We can write Ai=OiOA\overline{Ai} = \overline{Oi} - \overline{OA}.

S=i=BH(OiOA)=i=BHOii=BHOA=i=BHOi7OAS = \sum_{i=B}^H (\overline{Oi} - \overline{OA}) = \sum_{i=B}^H \overline{Oi} - \sum_{i=B}^H \overline{OA} = \sum_{i=B}^H \overline{Oi} - 7\overline{OA}.

From i=AHOi=0\sum_{i=A}^H \overline{Oi} = \vec{0}, we have OA+i=BHOi=0\overline{OA} + \sum_{i=B}^H \overline{Oi} = \vec{0}, so i=BHOi=OA\sum_{i=B}^H \overline{Oi} = -\overline{OA}.

Substituting this into the expression for S: S=OA7OA=8OAS = -\overline{OA} - 7\overline{OA} = -8\overline{OA}.

We are given AO=2i^+3j^4k^\overline{AO} = 2\hat{i}+3\hat{j}-4\hat{k}.

OA=AO=(2i^+3j^4k^)=2i^3j^+4k^\overline{OA} = -\overline{AO} = -(2\hat{i}+3\hat{j}-4\hat{k}) = -2\hat{i}-3\hat{j}+4\hat{k}.

S=8(2i^3j^+4k^)=16i^+24j^32k^S = -8(-2\hat{i}-3\hat{j}+4\hat{k}) = 16\hat{i}+24\hat{j}-32\hat{k}.

Answer: 16i^+24j^32k^16\hat{i}+24\hat{j}-32\hat{k}