Question
Question: In an octagon ABCDEFGH of equal side, what is the sum of $\overline{AB}+\overline{AC}+\overline{AD}+...
In an octagon ABCDEFGH of equal side, what is the sum of AB+AC+AD+AE+AF+AG+AH if, AO=2i^+3j^−4k^ ?

A
−16i^−24j^+32k^
B
16i^+24j^−32k^
C
16i^+24j^+32k^
D
16i^−24j^
Answer
16i^+24j^−32k^
Explanation
Solution
Let O be the center of the regular octagon. The sum of vectors from the center to the vertices is zero: ∑i=AHOi=0.
The sum of vectors from vertex A to other vertices is S=∑i=BHAi.
We can write Ai=Oi−OA.
S=∑i=BH(Oi−OA)=∑i=BHOi−∑i=BHOA=∑i=BHOi−7OA.
From ∑i=AHOi=0, we have OA+∑i=BHOi=0, so ∑i=BHOi=−OA.
Substituting this into the expression for S: S=−OA−7OA=−8OA.
We are given AO=2i^+3j^−4k^.
OA=−AO=−(2i^+3j^−4k^)=−2i^−3j^+4k^.
S=−8(−2i^−3j^+4k^)=16i^+24j^−32k^.
Answer: 16i^+24j^−32k^