Question
Question: In an octagon ABCDEFGH of equal side, what is the sum of $\overline{AB}+\overline{AC}+\overline{AD}+...
In an octagon ABCDEFGH of equal side, what is the sum of AB+AC+AD+AE+AF+AG+AH if, AO=2i^+3j^−4k^ ?

−16i^−24j^+32k^
16i^+24j^−32k^
16i^+24j^+32k^
16i^−24j^
16i^+24j^−32k^
Solution
Let O be the center of the regular octagon ABCDEFGH. The sum of vectors from the center O to the vertices is zero: ∑i=AHOi=0.
We want to calculate S=∑i=BHAi.
Using the property Ai=Oi−OA, we have S=∑i=BH(Oi−OA)=∑i=BHOi−∑i=BHOA.
∑i=BHOi=(∑i=AHOi)−OA=0−OA=−OA.
∑i=BHOA=7OA.
So, S=−OA−7OA=−8OA.
Given AO=2i^+3j^−4k^, we have OA=−AO=−(2i^+3j^−4k^)=−2i^−3j^+4k^.
S=−8(−2i^−3j^+4k^)=16i^+24j^−32k^.
Alternatively, using the property that for a regular n-sided polygon with center O, the sum of vectors from a vertex A to all other vertices is nAO.
For an octagon (n=8), the sum of vectors from A to all other vertices (B, C, D, E, F, G, H) is 8AO.
Given AO=2i^+3j^−4k^.
The sum is 8(2i^+3j^−4k^)=16i^+24j^−32k^.