Solveeit Logo

Question

Question: In an octagon ABCDEFGH of equal side, what is the sum of $\overline{AB}+\overline{AC}+\overline{AD}+...

In an octagon ABCDEFGH of equal side, what is the sum of AB+AC+AD+AE+AF+AG+AH\overline{AB}+\overline{AC}+\overline{AD}+\overline{AE}+\overline{AF}+\overline{AG}+\overline{AH} if, AO=2i^+3j^4k^\overline{AO}=2\hat{i}+3\hat{j}-4\hat{k} ?

A

16i^24j^+32k^-16\hat{i}-24\hat{j}+32\hat{k}

B

16i^+24j^32k^16\hat{i}+24\hat{j}-32\hat{k}

C

16i^+24j^+32k^16\hat{i}+24\hat{j}+32\hat{k}

D

16i^24j^16\hat{i}-24\hat{j}

Answer

16i^+24j^32k^16\hat{i}+24\hat{j}-32\hat{k}

Explanation

Solution

Let O be the center of the regular octagon ABCDEFGH. The sum of vectors from the center O to the vertices is zero: i=AHOi=0\sum_{i=A}^H \overline{Oi} = \vec{0}.

We want to calculate S=i=BHAiS = \sum_{i=B}^H \overline{Ai}.

Using the property Ai=OiOA\overline{Ai} = \overline{Oi} - \overline{OA}, we have S=i=BH(OiOA)=i=BHOii=BHOAS = \sum_{i=B}^H (\overline{Oi} - \overline{OA}) = \sum_{i=B}^H \overline{Oi} - \sum_{i=B}^H \overline{OA}.

i=BHOi=(i=AHOi)OA=0OA=OA\sum_{i=B}^H \overline{Oi} = (\sum_{i=A}^H \overline{Oi}) - \overline{OA} = \vec{0} - \overline{OA} = -\overline{OA}.

i=BHOA=7OA\sum_{i=B}^H \overline{OA} = 7 \overline{OA}.

So, S=OA7OA=8OAS = -\overline{OA} - 7\overline{OA} = -8\overline{OA}.

Given AO=2i^+3j^4k^\overline{AO} = 2\hat{i}+3\hat{j}-4\hat{k}, we have OA=AO=(2i^+3j^4k^)=2i^3j^+4k^\overline{OA} = -\overline{AO} = -(2\hat{i}+3\hat{j}-4\hat{k}) = -2\hat{i}-3\hat{j}+4\hat{k}.

S=8(2i^3j^+4k^)=16i^+24j^32k^S = -8(-2\hat{i}-3\hat{j}+4\hat{k}) = 16\hat{i}+24\hat{j}-32\hat{k}.

Alternatively, using the property that for a regular n-sided polygon with center O, the sum of vectors from a vertex A to all other vertices is nAOn \overline{AO}.

For an octagon (n=8), the sum of vectors from A to all other vertices (B, C, D, E, F, G, H) is 8AO8 \overline{AO}.

Given AO=2i^+3j^4k^\overline{AO} = 2\hat{i}+3\hat{j}-4\hat{k}.

The sum is 8(2i^+3j^4k^)=16i^+24j^32k^8(2\hat{i}+3\hat{j}-4\hat{k}) = 16\hat{i}+24\hat{j}-32\hat{k}.