Solveeit Logo

Question

Question: In a triangle ABC, if b = $(\sqrt{3}-1)$ a and $\angle$C=30°, then the value of (A - B) is equal to ...

In a triangle ABC, if b = (31)(\sqrt{3}-1) a and \angleC=30°, then the value of (A - B) is equal to (All symbols used have usual meaning in a triangle.)

A

30°

B

45°

C

60°

D

75°

Answer

60°

Explanation

Solution

The problem asks us to find the value of (AB)(A-B) in a triangle ABC, given the relationship between sides aa and bb, and the angle CC.

Given:

  1. b=(31)ab = (\sqrt{3}-1) a
  2. C=30\angle C = 30^\circ

We need to find (AB)(A-B).

Step 1: Use the sum of angles in a triangle. In any triangle ABC, the sum of angles is 180180^\circ. A+B+C=180A + B + C = 180^\circ Substitute the given value of CC: A+B+30=180A + B + 30^\circ = 180^\circ A+B=18030A + B = 180^\circ - 30^\circ A+B=150A + B = 150^\circ

Step 2: Use Napier's Analogy (Tangent Rule). Napier's Analogy relates the sides and angles of a triangle: bab+a=tan(BA2)tan(B+A2)\frac{b-a}{b+a} = \frac{\tan\left(\frac{B-A}{2}\right)}{\tan\left(\frac{B+A}{2}\right)}

Step 3: Calculate the terms involving sides. From the given b=(31)ab = (\sqrt{3}-1)a: ba=(31)aa=(311)a=(32)ab-a = (\sqrt{3}-1)a - a = (\sqrt{3}-1-1)a = (\sqrt{3}-2)a b+a=(31)a+a=(31+1)a=3ab+a = (\sqrt{3}-1)a + a = (\sqrt{3}-1+1)a = \sqrt{3}a

Now, find the ratio bab+a\frac{b-a}{b+a}: bab+a=(32)a3a=323\frac{b-a}{b+a} = \frac{(\sqrt{3}-2)a}{\sqrt{3}a} = \frac{\sqrt{3}-2}{\sqrt{3}}

Step 4: Calculate the term involving the sum of angles. From Step 1, we have A+B=150A+B = 150^\circ. So, A+B2=1502=75\frac{A+B}{2} = \frac{150^\circ}{2} = 75^\circ.

Now, calculate tan(75)\tan\left(75^\circ\right): tan(75)=tan(45+30)\tan\left(75^\circ\right) = \tan\left(45^\circ + 30^\circ\right) Using the tangent addition formula tan(x+y)=tanx+tany1tanxtany\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}: tan(75)=tan45+tan301tan45tan30=1+131113=3+13313=3+131\tan\left(75^\circ\right) = \frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\frac{\sqrt{3}+1}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}} = \frac{\sqrt{3}+1}{\sqrt{3}-1} To rationalize the denominator, multiply the numerator and denominator by (3+1)(\sqrt{3}+1): tan(75)=(3+1)(3+1)(31)(3+1)=(3+1)2(3)212=3+1+2331=4+232=2+3\tan\left(75^\circ\right) = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{(\sqrt{3}+1)^2}{(\sqrt{3})^2 - 1^2} = \frac{3+1+2\sqrt{3}}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}

Step 5: Substitute the values into Napier's Analogy. 323=tan(BA2)2+3\frac{\sqrt{3}-2}{\sqrt{3}} = \frac{\tan\left(\frac{B-A}{2}\right)}{2+\sqrt{3}}

Now, solve for tan(BA2)\tan\left(\frac{B-A}{2}\right): tan(BA2)=(32)(2+3)3\tan\left(\frac{B-A}{2}\right) = \frac{(\sqrt{3}-2)(2+\sqrt{3})}{\sqrt{3}}

Let's simplify the numerator: (32)(2+3)=23+(3)22(2)23(\sqrt{3}-2)(2+\sqrt{3}) = 2\sqrt{3} + (\sqrt{3})^2 - 2(2) - 2\sqrt{3} =23+3423= 2\sqrt{3} + 3 - 4 - 2\sqrt{3} =34=1= 3 - 4 = -1

So, tan(BA2)=13\tan\left(\frac{B-A}{2}\right) = \frac{-1}{\sqrt{3}}

Step 6: Find the angle BA2\frac{B-A}{2}. We know that tan(30)=13\tan(30^\circ) = \frac{1}{\sqrt{3}}. Since tan(BA2)\tan\left(\frac{B-A}{2}\right) is negative, and BA2\frac{B-A}{2} must be an angle between 90-90^\circ and 9090^\circ (as it's half the difference of angles in a triangle), we use the property tan(x)=tanx\tan(-x) = -\tan x. So, tan(BA2)=tan(30)=tan(30)\tan\left(\frac{B-A}{2}\right) = -\tan(30^\circ) = \tan(-30^\circ) Therefore, BA2=30\frac{B-A}{2} = -30^\circ

Step 7: Calculate (AB)(A-B). Multiply by 2: BA=60B-A = -60^\circ To find (AB)(A-B), multiply by -1: AB=60A-B = 60^\circ