Question
Question: If $y = \tan^{-1}(\frac{\log(\frac{e}{x^2})}{\log(ex^2)}) + \tan^{-1}(\frac{4 + 2\log x}{1 - 8\log x...
If y=tan−1(log(ex2)log(x2e))+tan−1(1−8logx4+2logx), then dxdy is

Answer
0
Explanation
Solution
-
Write the given expression as:
A=log(ex2)log(x2e)=1+2logx1−2logx
B=1−8logx4+2logx
-
Notice that
tan−1(1+2logx1−2logx)=4π−tan−1(2logx)
(since tan(4π−θ)=1+tanθ1−tanθ).
-
Also, using the tangent addition formula,
tan−1(1−8logx4+2logx)=tan−1(4)+tan−1(2logx)
(because tan(tan−1(4)+tan−1(2logx))=1−8logx4+2logx).
-
Thus, the sum becomes:
y=(4π−tan−1(2logx))+(tan−1(4)+tan−1(2logx))=4π+tan−1(4).
-
Since y is a constant, its derivative with respect to x is 0.