Solveeit Logo

Question

Question: If $y = \tan^{-1}(\frac{\log(\frac{e}{x^2})}{\log(ex^2)}) + \tan^{-1}(\frac{4 + 2\log x}{1 - 8\log x...

If y=tan1(log(ex2)log(ex2))+tan1(4+2logx18logx)y = \tan^{-1}(\frac{\log(\frac{e}{x^2})}{\log(ex^2)}) + \tan^{-1}(\frac{4 + 2\log x}{1 - 8\log x}), then dydx\frac{dy}{dx} is

Answer

0

Explanation

Solution

  1. Write the given expression as:

    A=log(ex2)log(ex2)=12logx1+2logxA = \dfrac{\log\left(\frac{e}{x^2}\right)}{\log(e x^2)} = \dfrac{1 - 2\log x}{1 + 2\log x}

    B=4+2logx18logxB = \dfrac{4+2\log x}{1-8\log x}

  2. Notice that

    tan1(12logx1+2logx)=π4tan1(2logx)\tan^{-1}\Big(\dfrac{1-2\log x}{1+2\log x}\Big) = \frac{\pi}{4} - \tan^{-1}(2\log x)

    (since tan(π4θ)=1tanθ1+tanθ\tan\left(\frac{\pi}{4}-\theta\right)=\frac{1-\tan\theta}{1+\tan\theta}).

  3. Also, using the tangent addition formula,

    tan1(4+2logx18logx)=tan1(4)+tan1(2logx)\tan^{-1}\Big(\frac{4+2\log x}{1-8\log x}\Big) = \tan^{-1}(4) + \tan^{-1}(2\log x)

    (because tan(tan1(4)+tan1(2logx))=4+2logx18logx\tan\big(\tan^{-1}(4)+\tan^{-1}(2\log x)\big) = \frac{4+2\log x}{1-8\log x}).

  4. Thus, the sum becomes:

    y=(π4tan1(2logx))+(tan1(4)+tan1(2logx))=π4+tan1(4)y = \left(\frac{\pi}{4} - \tan^{-1}(2\log x)\right) + \left(\tan^{-1}(4) + \tan^{-1}(2\log x)\right) = \frac{\pi}{4} + \tan^{-1}(4).

  5. Since yy is a constant, its derivative with respect to xx is 00.