Solveeit Logo

Question

Question: If $y = \sec^{-1}(\frac{x+x^{-1}}{x-x^{-1}})$, then $\frac{dy}{dx} = $...

If y=sec1(x+x1xx1)y = \sec^{-1}(\frac{x+x^{-1}}{x-x^{-1}}), then dydx=\frac{dy}{dx} =

A

21+x2\frac{-2}{1+x^2}

B

11+x2\frac{-1}{1+x^2}

C

21x2\frac{2}{1-x^2}

D

11+x2\frac{1}{1+x^2}

Answer

21+x2\frac{-2}{1+x^2}

Explanation

Solution

The given function is y=sec1(x+x1xx1)y = \sec^{-1}\left(\frac{x+x^{-1}}{x-x^{-1}}\right).

First, simplify the argument of the sec1\sec^{-1} function:

x+x1xx1=x+1xx1x=x2+1xx21x=x2+1x21\frac{x+x^{-1}}{x-x^{-1}} = \frac{x+\frac{1}{x}}{x-\frac{1}{x}} = \frac{\frac{x^2+1}{x}}{\frac{x^2-1}{x}} = \frac{x^2+1}{x^2-1}.

So, y=sec1(x2+1x21)y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right).

We can use the identity sec1(u)=cos1(1u)\sec^{-1}(u) = \cos^{-1}\left(\frac{1}{u}\right) for u1|u| \ge 1.

The argument is u=x2+1x21u = \frac{x^2+1}{x^2-1}. For the function to be defined, we must have u1|u| \ge 1, i.e., x2+1x211\left|\frac{x^2+1}{x^2-1}\right| \ge 1.

Since x2+1>0x^2+1 > 0, this is equivalent to x2+1x211\frac{x^2+1}{|x^2-1|} \ge 1, which means x2+1x21x^2+1 \ge |x^2-1|.

If x21>0x^2-1 > 0, i.e., x>1|x| > 1, then x2+1x21x^2+1 \ge x^2-1, which is true (111 \ge -1).

If x21<0x^2-1 < 0, i.e., x<1|x| < 1 and x0x \neq 0, then x2+1(x21)=1x2x^2+1 \ge -(x^2-1) = 1-x^2, which means 2x202x^2 \ge 0, which is true for x0x \neq 0.

The function is defined for xR{1,0,1}x \in \mathbb{R} \setminus \{-1, 0, 1\}.

Case 1: x>1|x| > 1.

In this case, x21>0x^2-1 > 0, and x2+1x21>1\frac{x^2+1}{x^2-1} > 1.

y=sec1(x2+1x21)=cos1(x21x2+1)y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right) = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right).

Let x=cotθx = \cot \theta. Since x>1|x| > 1, we have 0<θ<π40 < \theta < \frac{\pi}{4} (if x>1x > 1) or 3π4<θ<π\frac{3\pi}{4} < \theta < \pi (if x<1x < -1).

x21x2+1=cot2θ1cot2θ+1=cos2θsin2θ1cos2θsin2θ+1=cos2θsin2θcos2θ+sin2θ=cos(2θ)\frac{x^2-1}{x^2+1} = \frac{\cot^2 \theta - 1}{\cot^2 \theta + 1} = \frac{\frac{\cos^2 \theta}{\sin^2 \theta} - 1}{\frac{\cos^2 \theta}{\sin^2 \theta} + 1} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} = \cos(2\theta).

So, y=cos1(cos(2θ))y = \cos^{-1}(\cos(2\theta)).

If x>1x > 1, then 0<θ<π40 < \theta < \frac{\pi}{4}, so 0<2θ<π20 < 2\theta < \frac{\pi}{2}. In this range, cos1(cos(2θ))=2θ\cos^{-1}(\cos(2\theta)) = 2\theta.

y=2θ=2cot1(x)y = 2\theta = 2\cot^{-1}(x).

dydx=211+x2=21+x2\frac{dy}{dx} = 2 \cdot \frac{-1}{1+x^2} = \frac{-2}{1+x^2}.

If x<1x < -1, then 3π4<θ<π\frac{3\pi}{4} < \theta < \pi, so 3π2<2θ<2π\frac{3\pi}{2} < 2\theta < 2\pi.

In this range, cos(2θ)=cos(2π2θ)\cos(2\theta) = \cos(2\pi - 2\theta). Also, 0<2π2θ<π20 < 2\pi - 2\theta < \frac{\pi}{2}.

So cos1(cos(2θ))=cos1(cos(2π2θ))=2π2θ\cos^{-1}(\cos(2\theta)) = \cos^{-1}(\cos(2\pi - 2\theta)) = 2\pi - 2\theta.

y=2π2θ=2π2cot1(x)y = 2\pi - 2\theta = 2\pi - 2\cot^{-1}(x).

dydx=0211+x2=21+x2\frac{dy}{dx} = 0 - 2 \cdot \frac{-1}{1+x^2} = \frac{2}{1+x^2}.

The derivative depends on whether x>1x > 1 or x<1x < -1. However, the options are single expressions. Let's check the other case.

Case 2: x<1|x| < 1 and x0x \neq 0.

In this case, x21<0x^2-1 < 0, and x2+1x21<1\frac{x^2+1}{x^2-1} < -1.

y=sec1(x2+1x21)y = \sec^{-1}\left(\frac{x^2+1}{x^2-1}\right).

Let x=tanθx = \tan \theta. Since x<1,x0|x| < 1, x \neq 0, we have π4<θ<π4-\frac{\pi}{4} < \theta < \frac{\pi}{4}, θ0\theta \neq 0.

x2+1x21=tan2θ+1tan2θ1=1+tan2θ(1tan2θ)=sec2θcos(2θ)/cos2θ=1/cos2θcos(2θ)/cos2θ=1cos(2θ)=sec(2θ)\frac{x^2+1}{x^2-1} = \frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} = \frac{1+\tan^2 \theta}{-(1-\tan^2 \theta)} = \frac{\sec^2 \theta}{-\cos(2\theta)/\cos^2 \theta} = \frac{1/\cos^2 \theta}{-\cos(2\theta)/\cos^2 \theta} = -\frac{1}{\cos(2\theta)} = -\sec(2\theta).

So, y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)).

If π4<θ<π4,θ0-\frac{\pi}{4} < \theta < \frac{\pi}{4}, \theta \neq 0, then π2<2θ<π2,2θ0-\frac{\pi}{2} < 2\theta < \frac{\pi}{2}, 2\theta \neq 0.

In this range, cos(2θ)>0\cos(2\theta) > 0, so sec(2θ)>0\sec(2\theta) > 0.

Let v=sec(2θ)v = -\sec(2\theta). Then v<0v < 0.

We need to evaluate sec1(v)\sec^{-1}(v) where v<1v < -1.

Let v=sec(2θ)v = -\sec(2\theta). Since sec1(u)=πsec1(u)\sec^{-1}(-u) = \pi - \sec^{-1}(u) for u1u \ge 1.

y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)). Here u=sec(2θ)=1cos(2θ)u = \sec(2\theta) = \frac{1}{\cos(2\theta)}.

Since π2<2θ<π2,2θ0-\frac{\pi}{2} < 2\theta < \frac{\pi}{2}, 2\theta \neq 0, we have cos(2θ)>0\cos(2\theta) > 0.

If 0<x<10 < |x| < 1, then 0<x2<10 < x^2 < 1, so 1<x21<0-1 < x^2-1 < 0. x2+1>1x^2+1 > 1.

x2+1x21<1\frac{x^2+1}{x^2-1} < -1.

So sec(2θ)<1-\sec(2\theta) < -1, which means sec(2θ)>1\sec(2\theta) > 1. This is true since 0<2θ<π20 < |2\theta| < \frac{\pi}{2}.

y=πsec1(sec(2θ))y = \pi - \sec^{-1}(\sec(2\theta)).

Since 0<2θ<π20 < |2\theta| < \frac{\pi}{2}, we have 2θ(π2,0)(0,π2)2\theta \in (-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}).

If 0<2θ<π20 < 2\theta < \frac{\pi}{2} (i.e., 0<θ<π40 < \theta < \frac{\pi}{4}, which means 0<x<10 < x < 1), then sec1(sec(2θ))=2θ\sec^{-1}(\sec(2\theta)) = 2\theta.

y=π2θ=π2tan1(x)y = \pi - 2\theta = \pi - 2\tan^{-1}(x).

dydx=0211+x2=21+x2\frac{dy}{dx} = 0 - 2 \cdot \frac{1}{1+x^2} = \frac{-2}{1+x^2}.

If π2<2θ<0-\frac{\pi}{2} < 2\theta < 0 (i.e., π4<θ<0-\frac{\pi}{4} < \theta < 0, which means 1<x<0-1 < x < 0), then sec1(sec(2θ))=2θ\sec^{-1}(\sec(2\theta)) = -2\theta.

y=π(2θ)=π+2θ=π+2tan1(x)y = \pi - (-2\theta) = \pi + 2\theta = \pi + 2\tan^{-1}(x).

dydx=0+211+x2=21+x2\frac{dy}{dx} = 0 + 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2}.

The derivative is 21+x2\frac{-2}{1+x^2} for x>1|x| > 1 and for 0<x<10 < x < 1.

The derivative is 21+x2\frac{2}{1+x^2} for 1<x<0-1 < x < 0.

Let's look at the options again. Option (A) is 21+x2\frac{-2}{1+x^2}. This matches the derivative for x(0,1)(x>1)x \in (0, 1) \cup (|x| > 1).

Option (D) is 11+x2\frac{1}{1+x^2}.

Option (B) is 11+x2\frac{-1}{1+x^2}.

Option (C) is 21x2\frac{2}{1-x^2}.

It seems there might be a domain restriction implied or a standard convention used in the problem. Often in such problems, the principal values are considered, and the domain is chosen such that the simplification holds directly.

Let's re-examine the substitution x=cotθx = \cot \theta.

y=sec1(sec(2θ))y = \sec^{-1}(\sec(2\theta)).

The principal range of sec1(u)\sec^{-1}(u) is [0,π]{π2}[0, \pi] - \{\frac{\pi}{2}\}.

We need 2θ2\theta to be in this range.

If x>0x > 0, then 0<θ<π20 < \theta < \frac{\pi}{2}. So 0<2θ<π0 < 2\theta < \pi.

If 2θπ22\theta \neq \frac{\pi}{2}, i.e., θπ4\theta \neq \frac{\pi}{4}, i.e., xcot(π4)=1x \neq \cot(\frac{\pi}{4}) = 1.

For x>0,x1x > 0, x \neq 1, we have 2θ(0,π){π2}2\theta \in (0, \pi) - \{\frac{\pi}{2}\}.

In this range, sec1(sec(2θ))=2θ\sec^{-1}(\sec(2\theta)) = 2\theta.

So for x>0,x1x > 0, x \neq 1, y=2θ=2cot1(x)y = 2\theta = 2\cot^{-1}(x).

dydx=211+x2=21+x2\frac{dy}{dx} = 2 \cdot \frac{-1}{1+x^2} = \frac{-2}{1+x^2}.

If x<0x < 0, then π2<θ<π\frac{\pi}{2} < \theta < \pi. So π<2θ<2π\pi < 2\theta < 2\pi.

We need to express sec(2θ)\sec(2\theta) as sec(ϕ)\sec(\phi) where ϕ[0,π]{π2}\phi \in [0, \pi] - \{\frac{\pi}{2}\}.

Let ϕ=2π2θ\phi = 2\pi - 2\theta. Then 0<ϕ<π0 < \phi < \pi.

sec(ϕ)=sec(2π2θ)=sec(2θ)\sec(\phi) = \sec(2\pi - 2\theta) = \sec(2\theta).

So y=sec1(sec(2θ))=sec1(sec(2π2θ))y = \sec^{-1}(\sec(2\theta)) = \sec^{-1}(\sec(2\pi - 2\theta)).

If 2π2θ[0,π]{π2}2\pi - 2\theta \in [0, \pi] - \{\frac{\pi}{2}\}, then y=2π2θy = 2\pi - 2\theta.

2π2θ=π22\pi - 2\theta = \frac{\pi}{2} implies 2θ=3π22\theta = \frac{3\pi}{2}, θ=3π4\theta = \frac{3\pi}{4}, x=cot(3π4)=1x = \cot(\frac{3\pi}{4}) = -1. The function is undefined at x=1x=-1.

For x<0,x1x < 0, x \neq -1, we have π2<θ<π,θ3π4\frac{\pi}{2} < \theta < \pi, \theta \neq \frac{3\pi}{4}.

So π<2θ<2π,2θ3π2\pi < 2\theta < 2\pi, 2\theta \neq \frac{3\pi}{2}.

0<2π2θ<π,2π2θπ20 < 2\pi - 2\theta < \pi, 2\pi - 2\theta \neq \frac{\pi}{2}.

So 2π2θ(0,π){π2}2\pi - 2\theta \in (0, \pi) - \{\frac{\pi}{2}\}.

Thus, for x<0,x1x < 0, x \neq -1, y=2π2θ=2π2cot1(x)y = 2\pi - 2\theta = 2\pi - 2\cot^{-1}(x).

dydx=0211+x2=21+x2\frac{dy}{dx} = 0 - 2 \cdot \frac{-1}{1+x^2} = \frac{2}{1+x^2}.

The derivative is 21+x2\frac{-2}{1+x^2} for x>0,x1x > 0, x \neq 1.

The derivative is 21+x2\frac{2}{1+x^2} for x<0,x1x < 0, x \neq -1.

Let's consider the substitution x=tanθx = \tan \theta.

y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)).

Principal range of sec1\sec^{-1} is [0,π]{π2}[0, \pi] - \{\frac{\pi}{2}\}.

If 0<x<10 < x < 1, then 0<θ<π40 < \theta < \frac{\pi}{4}, so 0<2θ<π20 < 2\theta < \frac{\pi}{2}. sec(2θ)>1\sec(2\theta) > 1. sec(2θ)<1-\sec(2\theta) < -1.

Let u=sec(2θ)u = \sec(2\theta). y=sec1(u)=πsec1(u)=πsec1(sec(2θ))=π2θ=π2tan1(x)y = \sec^{-1}(-u) = \pi - \sec^{-1}(u) = \pi - \sec^{-1}(\sec(2\theta)) = \pi - 2\theta = \pi - 2\tan^{-1}(x).

dydx=0211+x2=21+x2\frac{dy}{dx} = 0 - 2 \cdot \frac{1}{1+x^2} = \frac{-2}{1+x^2}.

If x>1x > 1, then π4<θ<π2\frac{\pi}{4} < \theta < \frac{\pi}{2}, so π2<2θ<π\frac{\pi}{2} < 2\theta < \pi. sec(2θ)<1\sec(2\theta) < -1.

y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)). Let v=sec(2θ)v = -\sec(2\theta). v>1v > 1.

Let ϕ=2θπ\phi = 2\theta - \pi. Then π2<ϕ<0-\frac{\pi}{2} < \phi < 0. sec(ϕ)=sec(2θπ)=sec(π2θ)=sec(2θ)\sec(\phi) = \sec(2\theta - \pi) = \sec(\pi - 2\theta) = -\sec(2\theta).

So y=sec1(sec(ϕ))y = \sec^{-1}(\sec(\phi)). Since π2<ϕ<0-\frac{\pi}{2} < \phi < 0, sec(ϕ)>1\sec(\phi) > 1.

y=sec1(sec(ϕ))=ϕ=(2θπ)=π2θ=π2tan1(x)y = \sec^{-1}(\sec(\phi)) = -\phi = -(2\theta - \pi) = \pi - 2\theta = \pi - 2\tan^{-1}(x).

dydx=21+x2\frac{dy}{dx} = \frac{-2}{1+x^2}.

If 1<x<0-1 < x < 0, then π4<θ<0-\frac{\pi}{4} < \theta < 0, so π2<2θ<0-\frac{\pi}{2} < 2\theta < 0. sec(2θ)>1\sec(2\theta) > 1. sec(2θ)<1-\sec(2\theta) < -1.

y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)). Let u=sec(2θ)u = \sec(2\theta). y=πsec1(u)=πsec1(sec(2θ))=π(2θ)=π+2θ=π+2tan1(x)y = \pi - \sec^{-1}(u) = \pi - \sec^{-1}(\sec(2\theta)) = \pi - (-2\theta) = \pi + 2\theta = \pi + 2\tan^{-1}(x).

dydx=0+211+x2=21+x2\frac{dy}{dx} = 0 + 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2}.

If x<1x < -1, then π2<θ<π4-\frac{\pi}{2} < \theta < -\frac{\pi}{4}, so π<2θ<π2-\pi < 2\theta < -\frac{\pi}{2}. sec(2θ)<1\sec(2\theta) < -1.

y=sec1(sec(2θ))y = \sec^{-1}(-\sec(2\theta)). Let v=sec(2θ)v = -\sec(2\theta). v>1v > 1.

Let ϕ=2θ+π\phi = 2\theta + \pi. Then π2<ϕ<π\frac{\pi}{2} < \phi < \pi. sec(ϕ)=sec(2θ+π)=sec(2θ)\sec(\phi) = \sec(2\theta + \pi) = -\sec(2\theta).

y=sec1(sec(ϕ))y = \sec^{-1}(\sec(\phi)). Since π2<ϕ<π\frac{\pi}{2} < \phi < \pi, sec(ϕ)<1\sec(\phi) < -1.

y=ϕ=2θ+π=2tan1(x)+πy = \phi = 2\theta + \pi = 2\tan^{-1}(x) + \pi.

dydx=211+x2=21+x2\frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2}.

Summary of derivatives:

If x(0,1)(1,)x \in (0, 1) \cup (1, \infty), dydx=21+x2\frac{dy}{dx} = \frac{-2}{1+x^2}.

If x(,1)(1,0)x \in (-\infty, -1) \cup (-1, 0), dydx=21+x2\frac{dy}{dx} = \frac{2}{1+x^2}.

Since option (A) 21+x2\frac{-2}{1+x^2} is given, it is likely that the domain considered in the question is x>0x > 0. In many standard problems involving inverse trigonometric functions, a specific domain is implicitly assumed to get a single answer. If the question is from a single-choice context, and option (A) is the intended answer, the domain x>0x>0 is implied.

Let's verify if there is any property that leads to a single derivative.

Consider y=cos1(x21x2+1)y = \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right).

Let x2=tx^2 = t. y=cos1(t1t+1)y = \cos^{-1}\left(\frac{t-1}{t+1}\right).

Let t1t+1=cosα\frac{t-1}{t+1} = -\cos \alpha.

1t1+t=cosα\frac{1-t}{1+t} = \cos \alpha.

If t=tan2βt = \tan^2 \beta, 1tan2β1+tan2β=cos(2β)\frac{1-\tan^2 \beta}{1+\tan^2 \beta} = \cos(2\beta).

So x21x2+1=cos(2β)\frac{x^2-1}{x^2+1} = -\cos(2\beta).

y=cos1(cos(2β))=πcos1(cos(2β))y = \cos^{-1}(-\cos(2\beta)) = \pi - \cos^{-1}(\cos(2\beta)).

If x>0x > 0, let x=tanθx = \tan \theta, x2=tan2θx^2 = \tan^2 \theta. Let β=θ\beta = \theta.

y=πcos1(cos(2θ))y = \pi - \cos^{-1}(\cos(2\theta)).

If x>0x > 0, 0<θ<π20 < \theta < \frac{\pi}{2}. 0<2θ<π0 < 2\theta < \pi.

If 0<2θ<π0 < 2\theta < \pi, cos1(cos(2θ))=2θ\cos^{-1}(\cos(2\theta)) = 2\theta.

y=π2θ=π2tan1(x)y = \pi - 2\theta = \pi - 2\tan^{-1}(x).

dydx=211+x2\frac{dy}{dx} = -2 \frac{1}{1+x^2}. This is valid for x>0x > 0.

If x<0x < 0, let x=tanϕx = -\tan \phi, where ϕ>0\phi > 0.

x2=tan2ϕx^2 = \tan^2 \phi.

y=cos1(cos(2ϕ))y = \cos^{-1}(\cos(2\phi)).

If x<0x < 0, x=tanϕx = -\tan \phi. We need to relate ϕ\phi to xx. ϕ=tan1(x)\phi = \tan^{-1}(-x).

y=cos1(cos(2tan1(x)))y = \cos^{-1}(\cos(2\tan^{-1}(-x))).

If x<0x < 0, let x=ax = -a where a>0a > 0. y=cos1(a21a2+1)y = \cos^{-1}\left(\frac{a^2-1}{a^2+1}\right).

Let a=cotθa = \cot \theta, 0<θ<π20 < \theta < \frac{\pi}{2}.

y=cos1(cos(2θ))y = \cos^{-1}(\cos(2\theta)). 0<2θ<π0 < 2\theta < \pi.

y=2θ=2cot1(a)=2cot1(x)y = 2\theta = 2\cot^{-1}(a) = 2\cot^{-1}(-x).

dydx=211+(x)2(1)=21+x2\frac{dy}{dx} = 2 \cdot \frac{-1}{1+(-x)^2} \cdot (-1) = \frac{2}{1+x^2}.

The derivative is 21+x2\frac{-2}{1+x^2} for x>0x > 0 and 21+x2\frac{2}{1+x^2} for x<0x < 0.

The options suggest a single answer. Option (A) is 21+x2\frac{-2}{1+x^2}. This is the result when x>0x > 0.

Let's check if the question implies a specific domain. The form x+x1xx1\frac{x+x^{-1}}{x-x^{-1}} suggests x0x \neq 0. The term xx1x-x^{-1} in the denominator suggests x±1x \neq \pm 1.

The domain of sec1(u)\sec^{-1}(u) is u1|u| \ge 1. We found that this is true for all xR{1,0,1}x \in \mathbb{R} \setminus \{-1, 0, 1\}.

Consider the derivative of sec1(u)\sec^{-1}(u) is 1uu21\frac{1}{|u|\sqrt{u^2-1}}.

If we are required to choose one option, and option (A) appears as a valid derivative for a significant part of the domain (x>0x>0), it is likely the intended answer.

Let's check the derivative formula for sec1(u)\sec^{-1}(u) again.

ddu(sec1u)=1uu21\frac{d}{du}(\sec^{-1} u) = \frac{1}{|u|\sqrt{u^2-1}}.

u=x2+1x21u = \frac{x^2+1}{x^2-1}. dudx=4x(x21)2\frac{du}{dx} = \frac{-4x}{(x^2-1)^2}.

u21=2xx21\sqrt{u^2-1} = \frac{2|x|}{|x^2-1|}.

dydx=1x2+1x212xx214x(x21)2=x212(x2+1)2x4x(x21)2=(x21)2(x2+1)2x4x(x21)2=4x(x2+1)2x=2x(x2+1)x\frac{dy}{dx} = \frac{1}{\left|\frac{x^2+1}{x^2-1}\right| \frac{2|x|}{|x^2-1|}} \cdot \frac{-4x}{(x^2-1)^2} = \frac{|x^2-1|^2}{(x^2+1) 2|x|} \frac{-4x}{(x^2-1)^2} = \frac{(x^2-1)^2}{(x^2+1) 2|x|} \frac{-4x}{(x^2-1)^2} = \frac{-4x}{(x^2+1) 2|x|} = \frac{-2x}{(x^2+1)|x|}.

If x>0x > 0, x=x|x| = x, dydx=2x(x2+1)x=2x2+1\frac{dy}{dx} = \frac{-2x}{(x^2+1)x} = \frac{-2}{x^2+1}.

If x<0x < 0, x=x|x| = -x, dydx=2x(x2+1)(x)=2x2+1\frac{dy}{dx} = \frac{-2x}{(x^2+1)(-x)} = \frac{2}{x^2+1}.

The derivative is 21+x2\frac{-2}{1+x^2} for x>0x > 0 and 21+x2\frac{2}{1+x^2} for x<0x < 0.

Assuming the question implicitly considers the domain x>0x>0 (as is common when a single option is correct), the derivative is 21+x2\frac{-2}{1+x^2}.