Question
Question: If the p.m.f. of r.v. x is $$ P(x=x) = \frac{1}{10} \text{ for } x=1, 2, ........ 10 $$ $$ = 0 \te...
If the p.m.f. of r.v. x is
P(x=x)=101 for x=1,2,........10 =0 otherwise,Then Var(x) is equal to

Answer
8.25
Explanation
Solution
To find the variance Var(x), we first calculate the expected value E[X] and E[X^2].
-
Calculate the Mean (E[X]):
E[X]=x=1∑10x⋅101=101(1+2+⋯+10)=1055=5.5 -
Calculate E[X²]:
E[X2]=x=1∑10x2⋅101=101(12+22+⋯+102)=10385=38.5(Note: ∑x=110x2=610×11×21=385)
-
Variance:
Var(X)=E[X2]−(E[X])2=38.5−(5.5)2=38.5−30.25=8.25
Therefore, the variance Var(x) is 8.25.