Solveeit Logo

Question

Question: If the p.m.f. of r.v. x is $$ P(x=x) = \frac{1}{10} \text{ for } x=1, 2, ........ 10 $$ $$ = 0 \te...

If the p.m.f. of r.v. x is

P(x=x)=110 for x=1,2,........10P(x=x) = \frac{1}{10} \text{ for } x=1, 2, ........ 10 =0 otherwise,= 0 \text{ otherwise,}

Then Var(x) is equal to

Answer

8.25

Explanation

Solution

To find the variance Var(x), we first calculate the expected value E[X] and E[X^2].

  1. Calculate the Mean (E[X]):

    E[X]=x=110x110=110(1+2++10)=5510=5.5E[X] = \sum_{x=1}^{10} x \cdot \frac{1}{10} = \frac{1}{10}(1+2+\cdots+10) = \frac{55}{10} = 5.5
  2. Calculate E[X²]:

    E[X2]=x=110x2110=110(12+22++102)=38510=38.5E[X^2] = \sum_{x=1}^{10} x^2 \cdot \frac{1}{10} = \frac{1}{10}(1^2 + 2^2 + \cdots + 10^2) = \frac{385}{10} = 38.5

    (Note: x=110x2=10×11×216=385\sum_{x=1}^{10} x^2 = \frac{10 \times 11 \times 21}{6} = 385)

  3. Variance:

    Var(X)=E[X2](E[X])2=38.5(5.5)2=38.530.25=8.25\text{Var}(X) = E[X^2] - (E[X])^2 = 38.5 - (5.5)^2 = 38.5 - 30.25 = 8.25

Therefore, the variance Var(x) is 8.25.