Solveeit Logo

Question

Question: If the perpendicular sides of a right angled triangle are {$\cos2\alpha + \cos2\beta + 2\cos(\alpha ...

If the perpendicular sides of a right angled triangle are {cos2α+cos2β+2cos(α+β)\cos2\alpha + \cos2\beta + 2\cos(\alpha + \beta)} and {sin2α+sin2β+2sin(α+β)\sin2\alpha + \sin2\beta + 2\sin(\alpha + \beta)}, then the length of the hypotenuse is :

A

2[1 + cos(α- β)]

B

2[1 - cos(α + β)]

C

4 cos2αβ2\cos^2 \frac{\alpha - \beta}{2}

D

4sin2α+β2\sin^2 \frac{\alpha + \beta}{2}

Answer

2[1 + cos(α- β)] or 4 cos2αβ2\cos^2 \frac{\alpha - \beta}{2}

Explanation

Solution

Let the two perpendicular sides of the right-angled triangle be aa and bb.

Given:

a=cos2α+cos2β+2cos(α+β)a = \cos2\alpha + \cos2\beta + 2\cos(\alpha + \beta)

b=sin2α+sin2β+2sin(α+β)b = \sin2\alpha + \sin2\beta + 2\sin(\alpha + \beta)

We will simplify aa and bb using trigonometric identities.

Recall the sum-to-product formulas:

cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

Simplify aa:

a=(cos2α+cos2β)+2cos(α+β)a = (\cos2\alpha + \cos2\beta) + 2\cos(\alpha + \beta)

a=2cos(2α+2β2)cos(2α2β2)+2cos(α+β)a = 2\cos\left(\frac{2\alpha+2\beta}{2}\right)\cos\left(\frac{2\alpha-2\beta}{2}\right) + 2\cos(\alpha + \beta)

a=2cos(α+β)cos(αβ)+2cos(α+β)a = 2\cos(\alpha + \beta)\cos(\alpha - \beta) + 2\cos(\alpha + \beta)

Factor out 2cos(α+β)2\cos(\alpha + \beta):

a=2cos(α+β)[cos(αβ)+1]a = 2\cos(\alpha + \beta)[\cos(\alpha - \beta) + 1]

Simplify bb:

b=(sin2α+sin2β)+2sin(α+β)b = (\sin2\alpha + \sin2\beta) + 2\sin(\alpha + \beta)

b=2sin(2α+2β2)cos(2α2β2)+2sin(α+β)b = 2\sin\left(\frac{2\alpha+2\beta}{2}\right)\cos\left(\frac{2\alpha-2\beta}{2}\right) + 2\sin(\alpha + \beta)

b=2sin(α+β)cos(αβ)+2sin(α+β)b = 2\sin(\alpha + \beta)\cos(\alpha - \beta) + 2\sin(\alpha + \beta)

Factor out 2sin(α+β)2\sin(\alpha + \beta):

b=2sin(α+β)[cos(αβ)+1]b = 2\sin(\alpha + \beta)[\cos(\alpha - \beta) + 1]

Let X=cos(αβ)+1X = \cos(\alpha - \beta) + 1.

Then, a=2cos(α+β)Xa = 2\cos(\alpha + \beta)X and b=2sin(α+β)Xb = 2\sin(\alpha + \beta)X.

The length of the hypotenuse cc is given by the Pythagorean theorem: c=a2+b2c = \sqrt{a^2 + b^2}.

c2=(2cos(α+β)X)2+(2sin(α+β)X)2c^2 = (2\cos(\alpha + \beta)X)^2 + (2\sin(\alpha + \beta)X)^2

c2=4cos2(α+β)X2+4sin2(α+β)X2c^2 = 4\cos^2(\alpha + \beta)X^2 + 4\sin^2(\alpha + \beta)X^2

Factor out 4X24X^2:

c2=4X2[cos2(α+β)+sin2(α+β)]c^2 = 4X^2[\cos^2(\alpha + \beta) + \sin^2(\alpha + \beta)]

Using the identity cos2θ+sin2θ=1\cos^2\theta + \sin^2\theta = 1:

c2=4X2(1)c^2 = 4X^2(1)

c2=4X2c^2 = 4X^2

Taking the square root:

c=4X2=2Xc = \sqrt{4X^2} = 2|X|

Substitute back X=cos(αβ)+1X = \cos(\alpha - \beta) + 1:

c=2cos(αβ)+1c = 2|\cos(\alpha - \beta) + 1|

Since 1cos(αβ)1-1 \le \cos(\alpha - \beta) \le 1, it follows that 0cos(αβ)+120 \le \cos(\alpha - \beta) + 1 \le 2.

Therefore, cos(αβ)+1\cos(\alpha - \beta) + 1 is always non-negative, so cos(αβ)+1=cos(αβ)+1|\cos(\alpha - \beta) + 1| = \cos(\alpha - \beta) + 1.

So, c=2[cos(αβ)+1]c = 2[\cos(\alpha - \beta) + 1].

We can further simplify this expression using the half-angle identity 1+cosθ=2cos2(θ/2)1 + \cos\theta = 2\cos^2(\theta/2):

c=2[2cos2(αβ2)]c = 2[2\cos^2\left(\frac{\alpha - \beta}{2}\right)]

c=4cos2(αβ2)c = 4\cos^2\left(\frac{\alpha - \beta}{2}\right)