Question
Question: If the perpendicular sides of a right angled triangle are {$\cos2\alpha + \cos2\beta + 2\cos(\alpha ...
If the perpendicular sides of a right angled triangle are {cos2α+cos2β+2cos(α+β)} and {sin2α+sin2β+2sin(α+β)}, then the length of the hypotenuse is :

2[1 + cos(α- β)]
2[1 - cos(α + β)]
4 cos22α−β
4sin22α+β
2[1 + cos(α- β)] or 4 cos22α−β
Solution
Let the two perpendicular sides of the right-angled triangle be a and b.
Given:
a=cos2α+cos2β+2cos(α+β)
b=sin2α+sin2β+2sin(α+β)
We will simplify a and b using trigonometric identities.
Recall the sum-to-product formulas:
cosA+cosB=2cos(2A+B)cos(2A−B)
sinA+sinB=2sin(2A+B)cos(2A−B)
Simplify a:
a=(cos2α+cos2β)+2cos(α+β)
a=2cos(22α+2β)cos(22α−2β)+2cos(α+β)
a=2cos(α+β)cos(α−β)+2cos(α+β)
Factor out 2cos(α+β):
a=2cos(α+β)[cos(α−β)+1]
Simplify b:
b=(sin2α+sin2β)+2sin(α+β)
b=2sin(22α+2β)cos(22α−2β)+2sin(α+β)
b=2sin(α+β)cos(α−β)+2sin(α+β)
Factor out 2sin(α+β):
b=2sin(α+β)[cos(α−β)+1]
Let X=cos(α−β)+1.
Then, a=2cos(α+β)X and b=2sin(α+β)X.
The length of the hypotenuse c is given by the Pythagorean theorem: c=a2+b2.
c2=(2cos(α+β)X)2+(2sin(α+β)X)2
c2=4cos2(α+β)X2+4sin2(α+β)X2
Factor out 4X2:
c2=4X2[cos2(α+β)+sin2(α+β)]
Using the identity cos2θ+sin2θ=1:
c2=4X2(1)
c2=4X2
Taking the square root:
c=4X2=2∣X∣
Substitute back X=cos(α−β)+1:
c=2∣cos(α−β)+1∣
Since −1≤cos(α−β)≤1, it follows that 0≤cos(α−β)+1≤2.
Therefore, cos(α−β)+1 is always non-negative, so ∣cos(α−β)+1∣=cos(α−β)+1.
So, c=2[cos(α−β)+1].
We can further simplify this expression using the half-angle identity 1+cosθ=2cos2(θ/2):
c=2[2cos2(2α−β)]
c=4cos2(2α−β)