Solveeit Logo

Question

Question: 10. If log (x + y) = log (xy) + 3, then dy/dx =...

  1. If log (x + y) = log (xy) + 3, then dy/dx =
A

(y/x)2(y/x)^2

B

(y/x)2-(y/x)^2

C

(x/y)2(x/y)^2

D

(x/y)2-(x/y)^2

Answer

-(y/x)^2

Explanation

Solution

Given

log(x+y)=log(xy)+3,\log(x+y) = \log (xy) + 3,

differentiate both sides with respect to xx. Using the chain rule:

1x+y(1+dydx)=1xy(y+xdydx).\frac{1}{x+y}(1+\frac{dy}{dx}) = \frac{1}{xy}\left(y + x\frac{dy}{dx}\right).

Multiplying both sides by xy(x+y)xy(x+y) gives:

xy(1+dydx)=(x+y)(y+xdydx).xy(1+\frac{dy}{dx}) = (x+y)(y + x\frac{dy}{dx}).

Expanding and simplifying:

xy+xydydx=xy+y2+x2dydx+xydydx.xy + xy\frac{dy}{dx} = xy + y^2 + x^2\frac{dy}{dx} + xy\frac{dy}{dx}.

Cancel xyxy and xydydxxy\frac{dy}{dx} from both sides:

0=y2+x2dydx.0 = y^2 + x^2\frac{dy}{dx}.

Thus,

dydx=y2x2=(yx)2.\frac{dy}{dx} = -\frac{y^2}{x^2} = -\left(\frac{y}{x}\right)^2.