Solveeit Logo

Question

Question: If $\frac{x-1}{x^2+2x+a}$ takes all real values for possible values of x, then find $a$....

If x1x2+2x+a\frac{x-1}{x^2+2x+a} takes all real values for possible values of x, then find aa.

Answer

-3

Explanation

Solution

Let y=x1x2+2x+ay = \frac{x-1}{x^2+2x+a}. For yy to take all real values, the equation y(x2+2x+a)=x1y(x^2+2x+a) = x-1 must have real solutions for xx for every real value of yy, provided the denominator is non-zero.

Rearranging, we get yx2+(2y1)x+(ay+1)=0yx^2 + (2y-1)x + (ay+1) = 0.

For y0y \ne 0, this is a quadratic in xx. It has real roots if the discriminant Δ=(2y1)24y(ay+1)0\Delta = (2y-1)^2 - 4y(ay+1) \ge 0.

Δ=(44a)y28y+1\Delta = (4-4a)y^2 - 8y + 1.

For Δ0\Delta \ge 0 for all y0y \ne 0, the quadratic in yy must satisfy 44a04-4a \ge 0 and (8)24(44a)(1)0(-8)^2 - 4(4-4a)(1) \le 0.

a1a \le 1 and 6416+16a0    48+16a0    a364 - 16 + 16a \le 0 \implies 48 + 16a \le 0 \implies a \le -3.

Thus, for y0y \ne 0, real roots exist if a3a \le -3.

For y=0y=0, the equation is x+1=0-x+1=0, so x=1x=1. For y=0y=0 to be in the range, the denominator at x=1x=1 must be non-zero: 12+2(1)+a=3+a01^2+2(1)+a = 3+a \ne 0, so a3a \ne -3.

Combining the conditions for all real yy to be possible, we need a3a \le -3 and a3a \ne -3, which means a<3a < -3.

If a<3a < -3, the range is R\mathbb{R}.

If a=3a = -3, the range is R{0,1/4}\mathbb{R} \setminus \{0, 1/4\}.

The question asks for "find aa", implying a specific value. The value a=3a=-3 is the boundary between the region where the range is R\mathbb{R} (a<3a<-3) and where it is not. Assuming the question expects this critical value, the answer is -3.