Question
Question: If $\frac{1 + \sin 6^\circ}{\cos 6^\circ} = \tan A = \sqrt{\frac{1 + \sin B}{1 - \sin B}}$; where A ...
If cos6∘1+sin6∘=tanA=1−sinB1+sinB; where A & B ∈ (0,90°) then-

A = 8B
8A = B
A-7B = 6°
A + B = 54°
A, C, D
Solution
The problem requires us to find the relationship between angles A and B given the equation involving trigonometric functions.
Step 1: Simplify the first part of the expression to find A. We are given cos6∘1+sin6∘=tanA. We use the trigonometric identities: 1+sinθ=1+cos(90∘−θ) cosθ=sin(90∘−θ)
Let θ=6∘. Then 90∘−θ=90∘−6∘=84∘. So, cos6∘1+sin6∘=sin84∘1+cos84∘.
Now, apply the half-angle identities: 1+cosx=2cos2(x/2) sinx=2sin(x/2)cos(x/2)
Substitute x=84∘: sin84∘1+cos84∘=2sin(84∘/2)cos(84∘/2)2cos2(84∘/2) =2sin42∘cos42∘2cos242∘ =sin42∘cos42∘ =cot42∘
Since cotx=tan(90∘−x), we have: cot42∘=tan(90∘−42∘)=tan48∘.
So, tanA=tan48∘. Given that A ∈ (0, 90°), we conclude that A=48∘.
Step 2: Simplify the second part of the expression and equate it to tanA to find B. We are given tanA=1−sinB1+sinB. First, simplify the term under the square root: 1−sinB1+sinB=(1−sinB)(1+sinB)(1+sinB)(1+sinB) =1−sin2B(1+sinB)2 =cos2B(1+sinB)2
Since B ∈ (0, 90°), sinB>0 and cosB>0. Therefore, 1+sinB>0. So, cos2B(1+sinB)2=cosB1+sinB.
Now, simplify cosB1+sinB using the same method as in Step 1: cosB1+sinB=sin(90∘−B)1+cos(90∘−B) Let C=90∘−B. =sinC1+cosC=cot(C/2) =cot(290∘−B) =cot(45∘−B/2)
Using cotx=tan(90∘−x): cot(45∘−B/2)=tan(90∘−(45∘−B/2)) =tan(90∘−45∘+B/2) =tan(45∘+B/2)
So, tanA=tan(45∘+B/2). From Step 1, we found tanA=tan48∘. Therefore, tan48∘=tan(45∘+B/2).
Given B ∈ (0, 90°), B/2∈(0,45∘). So, 45∘+B/2∈(45∘,90∘). Since both angles are in the interval (0, 90°), we can equate them: 48∘=45∘+B/2 B/2=48∘−45∘ B/2=3∘ B=6∘
Step 3: Check the given options with A = 48° and B = 6°.
(A) A = 8B 48∘=8×6∘ 48∘=48∘. This statement is correct.
(B) 8A = B 8×48∘=384∘ 384∘=6∘. This statement is incorrect.
(C) A - 7B = 6° 48∘−7×6∘=48∘−42∘ 6∘=6∘. This statement is correct.
(D) A + B = 54° 48∘+6∘=54∘ 54∘=54∘. This statement is correct.
Based on our calculations, options (A), (C), and (D) are all correct.