Solveeit Logo

Question

Question: If $\frac{1 + \sin 6^\circ}{\cos 6^\circ} = \tan A = \sqrt{\frac{1 + \sin B}{1 - \sin B}}$; where A ...

If 1+sin6cos6=tanA=1+sinB1sinB\frac{1 + \sin 6^\circ}{\cos 6^\circ} = \tan A = \sqrt{\frac{1 + \sin B}{1 - \sin B}}; where A & B ∈ (0,90°) then-

A

A = 8B

B

8A = B

C

A-7B = 6°

D

A + B = 54°

Answer

A, C, D

Explanation

Solution

The problem requires us to find the relationship between angles A and B given the equation involving trigonometric functions.

Step 1: Simplify the first part of the expression to find A. We are given 1+sin6cos6=tanA\frac{1 + \sin 6^\circ}{\cos 6^\circ} = \tan A. We use the trigonometric identities: 1+sinθ=1+cos(90θ)1 + \sin \theta = 1 + \cos(90^\circ - \theta) cosθ=sin(90θ)\cos \theta = \sin(90^\circ - \theta)

Let θ=6\theta = 6^\circ. Then 90θ=906=8490^\circ - \theta = 90^\circ - 6^\circ = 84^\circ. So, 1+sin6cos6=1+cos84sin84\frac{1 + \sin 6^\circ}{\cos 6^\circ} = \frac{1 + \cos 84^\circ}{\sin 84^\circ}.

Now, apply the half-angle identities: 1+cosx=2cos2(x/2)1 + \cos x = 2 \cos^2(x/2) sinx=2sin(x/2)cos(x/2)\sin x = 2 \sin(x/2) \cos(x/2)

Substitute x=84x = 84^\circ: 1+cos84sin84=2cos2(84/2)2sin(84/2)cos(84/2)\frac{1 + \cos 84^\circ}{\sin 84^\circ} = \frac{2 \cos^2(84^\circ/2)}{2 \sin(84^\circ/2) \cos(84^\circ/2)} =2cos2422sin42cos42= \frac{2 \cos^2 42^\circ}{2 \sin 42^\circ \cos 42^\circ} =cos42sin42= \frac{\cos 42^\circ}{\sin 42^\circ} =cot42= \cot 42^\circ

Since cotx=tan(90x)\cot x = \tan(90^\circ - x), we have: cot42=tan(9042)=tan48\cot 42^\circ = \tan(90^\circ - 42^\circ) = \tan 48^\circ.

So, tanA=tan48\tan A = \tan 48^\circ. Given that A ∈ (0, 90°), we conclude that A=48A = 48^\circ.

Step 2: Simplify the second part of the expression and equate it to tanA\tan A to find B. We are given tanA=1+sinB1sinB\tan A = \sqrt{\frac{1 + \sin B}{1 - \sin B}}. First, simplify the term under the square root: 1+sinB1sinB=(1+sinB)(1+sinB)(1sinB)(1+sinB)\sqrt{\frac{1 + \sin B}{1 - \sin B}} = \sqrt{\frac{(1 + \sin B)(1 + \sin B)}{(1 - \sin B)(1 + \sin B)}} =(1+sinB)21sin2B= \sqrt{\frac{(1 + \sin B)^2}{1 - \sin^2 B}} =(1+sinB)2cos2B= \sqrt{\frac{(1 + \sin B)^2}{\cos^2 B}}

Since B ∈ (0, 90°), sinB>0\sin B > 0 and cosB>0\cos B > 0. Therefore, 1+sinB>01 + \sin B > 0. So, (1+sinB)2cos2B=1+sinBcosB\sqrt{\frac{(1 + \sin B)^2}{\cos^2 B}} = \frac{1 + \sin B}{\cos B}.

Now, simplify 1+sinBcosB\frac{1 + \sin B}{\cos B} using the same method as in Step 1: 1+sinBcosB=1+cos(90B)sin(90B)\frac{1 + \sin B}{\cos B} = \frac{1 + \cos(90^\circ - B)}{\sin(90^\circ - B)} Let C=90BC = 90^\circ - B. =1+cosCsinC=cot(C/2)= \frac{1 + \cos C}{\sin C} = \cot(C/2) =cot(90B2)= \cot\left(\frac{90^\circ - B}{2}\right) =cot(45B/2)= \cot(45^\circ - B/2)

Using cotx=tan(90x)\cot x = \tan(90^\circ - x): cot(45B/2)=tan(90(45B/2))\cot(45^\circ - B/2) = \tan(90^\circ - (45^\circ - B/2)) =tan(9045+B/2)= \tan(90^\circ - 45^\circ + B/2) =tan(45+B/2)= \tan(45^\circ + B/2)

So, tanA=tan(45+B/2)\tan A = \tan(45^\circ + B/2). From Step 1, we found tanA=tan48\tan A = \tan 48^\circ. Therefore, tan48=tan(45+B/2)\tan 48^\circ = \tan(45^\circ + B/2).

Given B ∈ (0, 90°), B/2(0,45)B/2 \in (0, 45^\circ). So, 45+B/2(45,90)45^\circ + B/2 \in (45^\circ, 90^\circ). Since both angles are in the interval (0, 90°), we can equate them: 48=45+B/248^\circ = 45^\circ + B/2 B/2=4845B/2 = 48^\circ - 45^\circ B/2=3B/2 = 3^\circ B=6B = 6^\circ

Step 3: Check the given options with A = 48° and B = 6°.

(A) A = 8B 48=8×648^\circ = 8 \times 6^\circ 48=4848^\circ = 48^\circ. This statement is correct.

(B) 8A = B 8×48=3848 \times 48^\circ = 384^\circ 3846384^\circ \neq 6^\circ. This statement is incorrect.

(C) A - 7B = 6° 487×6=484248^\circ - 7 \times 6^\circ = 48^\circ - 42^\circ 6=66^\circ = 6^\circ. This statement is correct.

(D) A + B = 54° 48+6=5448^\circ + 6^\circ = 54^\circ 54=5454^\circ = 54^\circ. This statement is correct.

Based on our calculations, options (A), (C), and (D) are all correct.