Question
Question: f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} \;-\;\sqrt{x - 1}...
f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} ;-;\sqrt{x - 1}

Answer
2024 + \sqrt{x}, \quad x \ge 1
Explanation
Solution
Step 1. Recognise the perfect square under the first square root
2x−1+2x2−x=(x+x−1)2.Step 2. Therefore,
2x−1+2x2−x=(x+x−1)2=x+x−1,valid for x≥1.
Step 3. Substitute back into f(x):
f(x)=2024+(x+x−1)−x−1=2024+x.Conclusion. The simplified form is
f(x)=2024+x,x≥1.