Solveeit Logo

Question

Question: f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} \;-\;\sqrt{x - 1}...

f(x) = 2024 + \sqrt{2x - 1 + 2\sqrt{x^2 - x}} ;-;\sqrt{x - 1}

Answer

2024 + \sqrt{x}, \quad x \ge 1

Explanation

Solution

Step 1. Recognise the perfect square under the first square root

2x1+2x2x=(x+x1)2.2x - 1 + 2\sqrt{x^2 - x} = (\sqrt{x} + \sqrt{x - 1})^2.

Step 2. Therefore,

2x1+2x2x=(x+x1)2=x+x1,\sqrt{2x - 1 + 2\sqrt{x^2 - x}} = \sqrt{(\sqrt{x} + \sqrt{x - 1})^2} = \sqrt{x} + \sqrt{x - 1},

valid for x1x\ge1.

Step 3. Substitute back into f(x)f(x):

f(x)=2024+(x+x1)x1=2024+x.f(x) = 2024 + \bigl(\sqrt{x} + \sqrt{x - 1}\bigr) - \sqrt{x - 1} = 2024 + \sqrt{x}.

Conclusion. The simplified form is

f(x)=2024+x,x1.f(x)=2024+\sqrt{x},\quad x\ge1.