Solveeit Logo

Question

Question: يوضح الشكل دائرة تيار متردد تتكون من مصدر متردد ومجموعة من المكثفات. مستعينا بالبيانات المسجلة على ...

يوضح الشكل دائرة تيار متردد تتكون من مصدر متردد ومجموعة من المكثفات.

مستعينا بالبيانات المسجلة على الشكل، فإن المفاعلة السعوية المكافئة بالدائرة تساوي........

A

πkΩ\pi k\Omega

B

2πkΩ\pi k\Omega

C

1πkΩ\frac{1}{\pi}k\Omega

D

4.8πkΩ\frac{4.8}{\pi}k\Omega

Answer

The equivalent capacitive reactance is 1.7πkΩ\frac{1.7}{\pi} k\Omega. This value is not among the options. If forced to choose the closest one, it would be 1πkΩ\frac{1}{\pi}k\Omega, but note that the exact calculated value is not available in the choices, indicating a potential error in the question or options.

Explanation

Solution

Explanation of the solution:

  1. Analyze the circuit structure: The circuit can be divided into two main parallel branches connected across the AC source.

    • Left Branch: Consists of a 6 µF capacitor (C1C_1) in series with a parallel combination of a 6 µF capacitor (C2C_2) and a 5 µF capacitor (C3C_3).
    • Right Branch: Consists of a 4 µF capacitor (C4C_4) in series with a parallel combination of two 2 µF capacitors (C5C_5 and C6C_6).
  2. Calculate equivalent capacitance for the left branch:

    • Capacitors C2C_2 and C3C_3 are in parallel: C23=C2+C3=6μF+5μF=11μFC_{23} = C_2 + C_3 = 6 \mu F + 5 \mu F = 11 \mu F.
    • C1C_1 is in series with C23C_{23}: Cleft=C1×C23C1+C23=6μF×11μF6μF+11μF=6617μFC_{left} = \frac{C_1 \times C_{23}}{C_1 + C_{23}} = \frac{6 \mu F \times 11 \mu F}{6 \mu F + 11 \mu F} = \frac{66}{17} \mu F.
  3. Calculate equivalent capacitance for the right branch:

    • Capacitors C5C_5 and C6C_6 are in parallel: C56=C5+C6=2μF+2μF=4μFC_{56} = C_5 + C_6 = 2 \mu F + 2 \mu F = 4 \mu F.
    • C4C_4 is in series with C56C_{56}: Cright=C4×C56C4+C56=4μF×4μF4μF+4μF=168μF=2μFC_{right} = \frac{C_4 \times C_{56}}{C_4 + C_{56}} = \frac{4 \mu F \times 4 \mu F}{4 \mu F + 4 \mu F} = \frac{16}{8} \mu F = 2 \mu F.
  4. Calculate the total equivalent capacitance (CeqC_{eq}):

    • The left and right branches are in parallel: Ceq=Cleft+Cright=6617μF+2μF=66+(2×17)17μF=66+3417μF=10017μFC_{eq} = C_{left} + C_{right} = \frac{66}{17} \mu F + 2 \mu F = \frac{66 + (2 \times 17)}{17} \mu F = \frac{66 + 34}{17} \mu F = \frac{100}{17} \mu F.
  5. Calculate the angular frequency (ω\omega):

    • Given frequency f=50Hzf = 50 Hz.
    • ω=2πf=2π(50)=100π rad/s\omega = 2\pi f = 2\pi (50) = 100\pi \text{ rad/s}.
  6. Calculate the equivalent capacitive reactance (XCX_C):

    • XC=1ωCeq=1100π×(10017×106F)X_C = \frac{1}{\omega C_{eq}} = \frac{1}{100\pi \times \left(\frac{100}{17} \times 10^{-6} F\right)}
    • XC=17100π×100×106=1710000π×106=17102π=1700πΩX_C = \frac{17}{100\pi \times 100 \times 10^{-6}} = \frac{17}{10000\pi \times 10^{-6}} = \frac{17}{10^{-2}\pi} = \frac{1700}{\pi} \Omega.
  7. Convert to kilo-ohms (kΩk\Omega):

    • XC=1700π×103kΩ=1.7πkΩX_C = \frac{1700}{\pi} \times 10^{-3} k\Omega = \frac{1.7}{\pi} k\Omega.

Numerically, 1.7πkΩ1.73.14159kΩ0.541kΩ\frac{1.7}{\pi} k\Omega \approx \frac{1.7}{3.14159} k\Omega \approx 0.541 k\Omega.

Comparing this value with the given options, the calculated value does not exactly match any of the given options. The final answer is 1πkΩ\frac{1}{\pi}k\Omega (Note: This selection is based on choosing the numerically closest option, as the exact calculated value 1.7πkΩ\frac{1.7}{\pi}k\Omega is not available in the choices, indicating a potential error in the question or options.)