Solveeit Logo

Question

Question: $e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$...

extanydx+(1ex)sec2ydy=0e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0

Answer

tany=C(1ex)\tan y = C(1 - e^x)

Explanation

Solution

The given differential equation is: extanydx+(1ex)sec2ydy=0e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0

This is a first-order differential equation. We can solve it using the variable separable method.

Step 1: Separate the variables. Rearrange the terms to group xx terms with dxdx and yy terms with dydy: extanydx=(1ex)sec2ydye^x \tan y \, dx = - (1 - e^x) \sec^2 y \, dy Divide both sides by tany\tan y and (1ex)(1 - e^x) to separate the variables: ex1exdx=sec2ytanydy\frac{e^x}{1 - e^x} \, dx = - \frac{\sec^2 y}{\tan y} \, dy

Step 2: Integrate both sides. ex1exdx=sec2ytanydy\int \frac{e^x}{1 - e^x} \, dx = \int - \frac{\sec^2 y}{\tan y} \, dy

For the left-hand side integral, let u=1exu = 1 - e^x. Then, differentiate uu with respect to xx: du=exdxdu = -e^x \, dx So, exdx=due^x \, dx = -du. The integral becomes: duu=lnu+C1=ln1ex+C1\int \frac{-du}{u} = - \ln |u| + C_1 = - \ln |1 - e^x| + C_1

For the right-hand side integral, let v=tanyv = \tan y. Then, differentiate vv with respect to yy: dv=sec2ydydv = \sec^2 y \, dy The integral becomes: dvv=lnv+C2=lntany+C2\int - \frac{dv}{v} = - \ln |v| + C_2 = - \ln |\tan y| + C_2

Step 3: Combine the results and simplify. Equating the results of the integrals: ln1ex+C1=lntany+C2- \ln |1 - e^x| + C_1 = - \ln |\tan y| + C_2 Rearrange the terms: lntanyln1ex=C2C1\ln |\tan y| - \ln |1 - e^x| = C_2 - C_1 Let C=C2C1C = C_2 - C_1 be an arbitrary constant. lntany1ex=C\ln \left| \frac{\tan y}{1 - e^x} \right| = C To remove the logarithm, take the exponential of both sides: tany1ex=eC\left| \frac{\tan y}{1 - e^x} \right| = e^C Let A=eCA = e^C. Since CC is an arbitrary constant, AA is an arbitrary positive constant. tany1ex=±A\frac{\tan y}{1 - e^x} = \pm A Let K=±AK = \pm A. KK is an arbitrary non-zero constant. tany1ex=K\frac{\tan y}{1 - e^x} = K tany=K(1ex)\tan y = K (1 - e^x) This is the general solution. The constant KK can also be zero, which corresponds to the solution tany=0\tan y = 0, or y=nπy = n\pi for integer nn. This solution is also covered by the original differential equation if 1ex01-e^x \neq 0. Thus, KK is an arbitrary constant.

The final solution is: tany=C(1ex)\tan y = C (1 - e^x) (where CC is an arbitrary constant)