Solveeit Logo

Question

Question: 10 apples are distributed at random among 6 persons. The probability that at least one of them will...

10 apples are distributed at random among 6 persons. The

probability that at least one of them will receive none, is -

A

6143\frac { 6 } { 143 }

B

14C415C5\frac { { } ^ { 14 } \mathrm { C } _ { 4 } } { { } ^ { 15 } \mathrm { C } _ { 5 } }

C

137143\frac { 137 } { 143 }

D

None of these

Answer

137143\frac { 137 } { 143 }

Explanation

Solution

The required probability

= 1 – probability of each receiving at least one

= 1 – .

Now, the number of integral solutions of

x1 + x2 + x3 + x4 + x5 + x6 = 10

such that x1 ³ 1, x2 ³ 1, ……, x6 ³ 1 gives n(5) and the number of integral solutions of x1 + x2 + …. + x5 + x6 = 10 such that x1 ³ 0, x2 ³ 0, ….. , x6 ³ 0 gives n(S).

\ the required probability = 1 – 101C6110+61C61\frac { { } ^ { 10 - 1 } C _ { 6 - 1 } } { { } ^ { 10 + 6 - 1 } C _ { 6 - 1 } }

= 1 – 9C515C5\frac { { } ^ { 9 } \mathrm { C } _ { 5 } } { { } ^ { 15 } \mathrm { C } _ { 5 } } = 137143\frac { 137 } { 143 } .

Hence (3) is the correct answer