Solveeit Logo

Question

Question: A time varying horizontal force is acting on a block of mass 4kg kept on a rough surface having $\mu...

A time varying horizontal force is acting on a block of mass 4kg kept on a rough surface having μ=0.2\mu = 0.2. The variation in its velocity is shown in the graph. The impulse of the force in the interval t = 2s to t=4s is equal to:-

A

40 kgms1^{-1}

B

24 kgms1^{-1}

C

56 kgms1^{-1}

D

Cannot be determined

Answer

24 kgms1^{-1}

Explanation

Solution

The impulse of the applied force is calculated considering the change in momentum and the friction acting on the block.

  1. Identify Given Information:

    • Mass of the block, m=4 kgm = 4 \text{ kg}
    • Coefficient of kinetic friction, μ=0.2\mu = 0.2
    • Initial velocity at ti=2 st_i = 2 \text{ s}, vi=10 m/sv_i = 10 \text{ m/s}
    • Final velocity at tf=4 st_f = 4 \text{ s}, vf=2 m/sv_f = 2 \text{ m/s}
    • Acceleration due to gravity, g=10 m/s2g = 10 \text{ m/s}^2
  2. Calculate the Kinetic Friction Force:

    • Normal force, N=mg=4 kg×10 m/s2=40 NN = mg = 4 \text{ kg} \times 10 \text{ m/s}^2 = 40 \text{ N}
    • Kinetic friction force, fk=μN=0.2×40 N=8 Nf_k = \mu N = 0.2 \times 40 \text{ N} = 8 \text{ N}
  3. Apply the Impulse-Momentum Theorem for Net Force:

    • Jnet=Δp=m(vfvi)=4 kg×(2 m/s10 m/s)=32 kgm/sJ_{net} = \Delta p = m(v_f - v_i) = 4 \text{ kg} \times (2 \text{ m/s} - 10 \text{ m/s}) = -32 \text{ kgm/s}
  4. Relate Impulse of Applied Force to Net Impulse:

    • Jnet=JappliedJfriction_magnitudeJ_{net} = J_{applied} - J_{friction\_magnitude}
    • Jfriction_magnitude=fk×(tfti)=8 N×(4 s2 s)=16 NsJ_{friction\_magnitude} = f_k \times (t_f - t_i) = 8 \text{ N} \times (4 \text{ s} - 2 \text{ s}) = 16 \text{ Ns}
  5. Calculate the Impulse of Applied Force:

    • Japplied=Jnet+Jfriction_magnitude=32 kgm/s+16 kgm/s=16 kgm/sJ_{applied} = J_{net} + J_{friction\_magnitude} = -32 \text{ kgm/s} + 16 \text{ kgm/s} = -16 \text{ kgm/s}

Since the options are all positive, we consider the magnitude of the net impulse if the final velocity was intended to be 4 m/s instead of 2 m/s due to a possible error in the graph.

If vf=4 m/sv_f = 4 \text{ m/s}:

Δp=m(vfvi)=4 kg×(4 m/s10 m/s)=4 kg×(6 m/s)=24 kgm/s\Delta p = m(v_f - v_i) = 4 \text{ kg} \times (4 \text{ m/s} - 10 \text{ m/s}) = 4 \text{ kg} \times (-6 \text{ m/s}) = -24 \text{ kgm/s}.

The magnitude of the net impulse is 24 kgm/s24 \text{ kgm/s}.