Solveeit Logo

Question

Question: A strictly increasing sequence of positive integers a, b, c satisfies the property that $\frac{a+b}{...

A strictly increasing sequence of positive integers a, b, c satisfies the property that a+b2\frac{a+b}{2}, a+c2\frac{a+c}{2}, b+c2\frac{b+c}{2} form a geometric sequence. What is the smallest possible value of a + b + c?

Answer

19

Explanation

Solution

We are given that

a+b2,a+c2,b+c2\frac{a+b}{2},\quad \frac{a+c}{2},\quad \frac{b+c}{2}

form a geometric progression. Hence the middle term squared equals the product of the extreme terms:

(a+c2)2=a+b2b+c2.\Bigl(\frac{a+c}{2}\Bigr)^2=\frac{a+b}{2}\cdot\frac{b+c}{2}.

Multiplying both sides by 4 gives

(a+c)2=(a+b)(b+c).(a+c)^2 = (a+b)(b+c).

One clever method is to “reverse‐engineer” the three numbers. Introduce a parameter xx and a ratio rr (with r>1r>1 since a<b<ca<b<c) by writing

a+b2=x,a+c2=xr,b+c2=xr2.\frac{a+b}{2}=x,\quad \frac{a+c}{2}=xr,\quad \frac{b+c}{2}=xr^2.

Then

a+b=2x,a+c=2xr,b+c=2xr2.a+b=2x,\quad a+c=2xr,\quad b+c=2xr^2.

We can solve for a,b,ca,\,b,\,c by adding and subtracting. Adding the first two gives

2a+b+c=2x+2xr,2a+b+c=2x+2xr,

and since b+c=2xr2b+c=2xr^2 we get

2a=2x+2xr2xr2,a=x(1+rr2).2a=2x+2xr-2xr^2,\quad \Rightarrow\quad a=x(1+r-r^2).

Similarly, subtracting aa from a+ba+b yields

b=2xa=2xx(1+rr2)=x(1r+r2),b=2x-a =2x-x(1+r-r^2)=x(1 - r + r^2),

and from a+ca+c we have

c=2xra=x(2r1r+r2)=x(r+r21).c=2xr-a=x(2r-1-r+r^2)=x(r+r^2-1).

For these to be positive integers, the expressions

x(1+rr2),x(1r+r2),x(r+r21)x(1+r-r^2),\quad x(1-r+r^2),\quad x(r+r^2-1)

must be positive integers. It is natural to try a rational r=pqr=\frac{p}{q} (in lowest terms) and choose xx to clear denominators.

A good choice is r=32r=\frac{3}{2} (since r>1r>1). Then

a=x(1+3294)=x(4+694)=x4,a=x\Bigl(1+\frac{3}{2}-\frac{9}{4}\Bigr)=x\Bigl(\frac{4+6-9}{4}\Bigr)=\frac{x}{4}, b=x(132+94)=x(46+94)=7x4,b=x\Bigl(1-\frac{3}{2}+\frac{9}{4}\Bigr)=x\Bigl(\frac{4-6+9}{4}\Bigr)=\frac{7x}{4}, c=x(32+941)=x(6+944)=11x4.c=x\Bigl(\frac{3}{2}+\frac{9}{4}-1\Bigr)=x\Bigl(\frac{6+9-4}{4}\Bigr)=\frac{11x}{4}.

For aa, bb, and cc to be integers we choose the smallest xx such that x/4x/4 is an integer. Taking x=4x=4 yields

a=1,b=7,c=11.a=1,\quad b=7,\quad c=11.

Then

a+b+c=1+7+11=19.a+b+c=1+7+11=19.

Finally, we check the given condition:

a+b2=1+72=4,a+c2=1+112=6,b+c2=7+112=9,\frac{a+b}{2}=\frac{1+7}{2}=4,\quad \frac{a+c}{2}=\frac{1+11}{2}=6,\quad \frac{b+c}{2}=\frac{7+11}{2}=9,

which form a G.P. with common ratio 64=96=32\frac{6}{4}=\frac{9}{6}=\frac{3}{2}.

Thus, the smallest possible value of a+b+ca+b+c is 19.


Summary (Minimal Explanation):

  1. For numbers a+b2\frac{a+b}{2}, a+c2\frac{a+c}{2}, b+c2\frac{b+c}{2} in G.P., we have (a+c)2=(a+b)(b+c)(a+c)^2=(a+b)(b+c).

  2. By writing a+b2=x\frac{a+b}{2}=x, a+c2=xr\frac{a+c}{2}=xr, b+c2=xr2\frac{b+c}{2}=xr^2 and solving, we get

a=x(1+rr2),b=x(1r+r2),c=x(r+r21).a=x(1+r-r^2),\quad b=x(1-r+r^2),\quad c=x(r+r^2-1).
  1. Choosing r=32r=\frac{3}{2} and x=4x=4 yields a=1a=1, b=7b=7, c=11c=11 and hence a+b+c=19a+b+c=19.