Solveeit Logo

Question

Question: A pair of concentric spherical conductors of radii a and b are connected by a wire. A point charge q...

A pair of concentric spherical conductors of radii a and b are connected by a wire. A point charge q is detached from the inner one and moved radially with uniform velocity v to the outer one. Show that the rate of transfer of the induced charge from the inner to the outer sphere is dQ/dt = -qab(b - a)1^{-1}v(a + vt)2^{-2}.

Answer

The rate of transfer of the induced charge from the inner to the outer sphere is dQ/dt=qab(ba)1v(a+vt)2dQ/dt = -qab(b - a)^{-1}v(a + vt)^{-2}.

Explanation

Solution

Let QinnerQ_{inner} be the net charge on the inner conductor and QouterQ_{outer} be the net charge on the outer conductor. The potential at the surface of the inner conductor (radius aa) is given by: Va=14πϵ0(Qinnera+qr+Qouterb)V_a = \frac{1}{4\pi\epsilon_0} \left( \frac{Q_{inner}}{a} + \frac{q}{r} + \frac{Q_{outer}}{b} \right) The potential at the surface of the outer conductor (radius bb) is given by: Vb=14πϵ0(Qinnerb+qb+Qouterb)V_b = \frac{1}{4\pi\epsilon_0} \left( \frac{Q_{inner}}{b} + \frac{q}{b} + \frac{Q_{outer}}{b} \right)

Since the conductors are connected by a wire, Va=VbV_a = V_b. Equating the expressions: Qinnera+qr+Qouterb=Qinnerb+qb+Qouterb\frac{Q_{inner}}{a} + \frac{q}{r} + \frac{Q_{outer}}{b} = \frac{Q_{inner}}{b} + \frac{q}{b} + \frac{Q_{outer}}{b} Qinnera+qr=Qinnerb+qb\frac{Q_{inner}}{a} + \frac{q}{r} = \frac{Q_{inner}}{b} + \frac{q}{b} Qinner(1a1b)=q(1b1r)Q_{inner} \left( \frac{1}{a} - \frac{1}{b} \right) = q \left( \frac{1}{b} - \frac{1}{r} \right) Qinner(baab)=q(rbbr)Q_{inner} \left( \frac{b-a}{ab} \right) = q \left( \frac{r-b}{br} \right) Qinner=qabbarbbr=qa(rb)r(ba)Q_{inner} = q \frac{ab}{b-a} \frac{r-b}{br} = q \frac{a(r-b)}{r(b-a)}

Substituting r=a+vtr = a+vt: Qinner(t)=qa(a+vtb)(a+vt)(ba)=qa(b(a+vt))(a+vt)(ba)Q_{inner}(t) = q \frac{a(a+vt-b)}{(a+vt)(b-a)} = -q \frac{a(b-(a+vt))}{(a+vt)(b-a)}

The rate of transfer of charge from the inner to the outer sphere is the rate at which the charge on the inner sphere decreases, which is dQinnerdt-\frac{dQ_{inner}}{dt}. We have Qinner(t)=qaba(br(t)1)Q_{inner}(t) = -q \frac{a}{b-a} \left( \frac{b}{r(t)} - 1 \right). Using the chain rule, dQinnerdt=dQinnerdrdrdt\frac{dQ_{inner}}{dt} = \frac{dQ_{inner}}{dr} \frac{dr}{dt}. Given r(t)=a+vtr(t) = a+vt, so drdt=v\frac{dr}{dt} = v. dQinnerdr=qabaddr(br1)=qaba(br2)=qab(ba)r2\frac{dQ_{inner}}{dr} = -q \frac{a}{b-a} \frac{d}{dr} \left( \frac{b}{r} - 1 \right) = -q \frac{a}{b-a} \left( -\frac{b}{r^2} \right) = \frac{qab}{(b-a)r^2}. Therefore, dQinnerdt=qab(ba)r2v=qabv(ba)r2\frac{dQ_{inner}}{dt} = \frac{qab}{(b-a)r^2} \cdot v = \frac{qabv}{(b-a)r^2}. Substituting r=a+vtr = a+vt: dQinnerdt=qabv(ba)(a+vt)2\frac{dQ_{inner}}{dt} = \frac{qabv}{(b-a)(a+vt)^2}. The rate of transfer of charge from the inner to the outer sphere is dQinnerdt-\frac{dQ_{inner}}{dt}. dQdt=qabv(ba)(a+vt)2=qab(ba)1v(a+vt)2\frac{dQ}{dt} = - \frac{qabv}{(b-a)(a+vt)^2} = -qab(b - a)^{-1}v(a + vt)^{-2}.