Solveeit Logo

Question

Question: A black body at temperature T is radiating energy at a rate $E_1$ through waves of wavelength range ...

A black body at temperature T is radiating energy at a rate E1E_1 through waves of wavelength range λ1\lambda_1 to λ1+Δλ\lambda_1 + \Delta\lambda and E2E_2 through wavelength range λ2\lambda_2 to λ2+Δλ\lambda_2 + \Delta\lambda. If E1=E2E_1 = E_2 [b: Wein's constant and λ2>λ1\lambda_2 > \lambda_1, Δλ<<λ1\Delta\lambda<< \lambda_1]

A

bλ1<T<bλ2\frac{b}{\lambda_1}<T<\frac{b}{\lambda_2}

B

bλ1>T>bλ2\frac{b}{\lambda_1}>T>\frac{b}{\lambda_2}

C

bλ1=T=bλ2\frac{b}{\lambda_1}=T=\frac{b}{\lambda_2}

D

None of these

Answer

bλ1>T>bλ2\frac{b}{\lambda_1}>T>\frac{b}{\lambda_2}

Explanation

Solution

The energy radiated by a black body in a specific wavelength range is approximated by B(λ,T)ΔλB(\lambda, T) \Delta\lambda. Given E1=E2E_1 = E_2 and Δλ<<λ1\Delta\lambda << \lambda_1, we have B(λ1,T)B(λ2,T)B(\lambda_1, T) \approx B(\lambda_2, T). The spectral radiance curve B(λ,T)B(\lambda, T) peaks at λmax=b/T\lambda_{max} = b/T. Since λ1<λ2\lambda_1 < \lambda_2 and B(λ1,T)B(λ2,T)B(\lambda_1, T) \approx B(\lambda_2, T), λ1\lambda_1 must be to the left of the peak and λ2\lambda_2 to the right. Thus, λ1<λmax<λ2\lambda_1 < \lambda_{max} < \lambda_2, which means λ1<b/T<λ2\lambda_1 < b/T < \lambda_2. Rearranging this inequality gives bλ2<T<bλ1\frac{b}{\lambda_2} < T < \frac{b}{\lambda_1}, or equivalently, bλ1>T>bλ2\frac{b}{\lambda_1} > T > \frac{b}{\lambda_2}.