Solveeit Logo

Question

Quantitative Aptitude Question on Divisibility and Remainder

106810^{68} is divided by 13, the remainder is is

A

9

B

4

C

5

D

8

Answer

9

Explanation

Solution

To solve this, we need to find the remainder when 106810^{68} is divided by 13. This can be done using modular arithmetic. We first calculate the powers of 10 modulo 13:
101mod13=10 102mod13=100mod13=9 103mod13=1000mod13=12 104mod13=10000mod13=3 105mod13=100000mod13=4 106mod13=1000000mod13=110^1 mod 13 = 10 \\\ 10^2 mod 13 = 100 mod 13 = 9 \\\ 10^3 mod 13 = 1000 mod 13 = 12 \\\ 10^4 mod 13 = 10000 mod 13 = 3 \\\ 10^5 mod 13 = 100000 mod 13 = 4 \\\ 10^6 mod 13 = 1000000 mod 13 = 1
Since 1061(mod13)10^6 \equiv 1 \pmod{13}, we can simplify 1068(mod13)10^{68} \pmod{13} by noticing that 68=6×11+268 = 6 \times 11 + 2. Therefore:
1068=106×11+2=(106)11×10210^{68} = 10^{6 \times 11 + 2} = (10^6)^{11} \times 10^2
Using 1061(mod13)10^6 \equiv 1 \pmod{13}, this simplifies to:
1068111×1021029(mod13)10^{68} \equiv 1^{11} \times 10^2 \equiv 10^2 \equiv 9 \pmod{13}
Thus, the remainder when 106810^{68} is divided by 13 is 9.