Solveeit Logo

Question

Question: 45.4 V H₂O₂ solution (500 ml) when exposed to atmosphere looses 11.2 litre of O₂ at 1 atm, & 273 K. ...

45.4 V H₂O₂ solution (500 ml) when exposed to atmosphere looses 11.2 litre of O₂ at 1 atm, & 273 K. New molarity of H₂O₂ solution (Assume no change in volume) CT0031

Answer

2.05 M

Explanation

Solution

The problem asks for the new molarity of an H₂O₂ solution after it loses a certain volume of O₂ due to decomposition.

1. Initial Molarity of H₂O₂ Solution: The volume strength of H₂O₂ solution is given as 45.4 V. This means that 1 litre of this H₂O₂ solution will produce 45.4 litres of O₂ gas at STP (1 atm, 273 K). The decomposition of hydrogen peroxide is represented by the equation: 2H2O2(aq)2H2O(l)+O2(g)2H_2O_2(aq) \to 2H_2O(l) + O_2(g) From the stoichiometry, 2 moles of H₂O₂ produce 1 mole of O₂. At STP, 1 mole of O₂ occupies 22.4 litres. Therefore, 2 moles of H₂O₂ produce 22.4 litres of O₂ at STP. This implies that 1 mole of H₂O₂ produces 11.2 litres of O₂ at STP.

The molarity (M) of H₂O₂ solution can be calculated from its volume strength (V) using the formula: M=Volume Strength11.2M = \frac{\text{Volume Strength}}{11.2} Initial Molarity (MinitialM_{initial}) = 45.411.2=4.05357 M\frac{45.4}{11.2} = 4.05357 \text{ M}

2. Initial Moles of H₂O₂ in the Solution: The volume of the H₂O₂ solution is 500 ml = 0.5 L. Initial moles of H₂O₂ (ninitialn_{initial}) = Molarity × Volume of solution (in L) ninitial=4.05357 M×0.5 L=2.026785 molesn_{initial} = 4.05357 \text{ M} \times 0.5 \text{ L} = 2.026785 \text{ moles}

3. Moles of O₂ Lost: The solution loses 11.2 litres of O₂ at 1 atm and 273 K (STP conditions). Moles of O₂ lost (nO2 lostn_{O_2 \text{ lost}}) = Volume of O₂ lostMolar volume at STP\frac{\text{Volume of O₂ lost}}{\text{Molar volume at STP}} nO2 lost=11.2 L22.4 L/mol=0.5 molesn_{O_2 \text{ lost}} = \frac{11.2 \text{ L}}{22.4 \text{ L/mol}} = 0.5 \text{ moles}

4. Moles of H₂O₂ Decomposed: From the decomposition reaction (2H2O22H2O+O22H_2O_2 \to 2H_2O + O_2), 1 mole of O₂ is produced from 2 moles of H₂O₂. So, the moles of H₂O₂ decomposed (ndecomposedn_{decomposed}) = 2×nO2 lost2 \times n_{O_2 \text{ lost}} ndecomposed=2×0.5 moles=1.0 molen_{decomposed} = 2 \times 0.5 \text{ moles} = 1.0 \text{ mole}

5. Remaining Moles of H₂O₂: Remaining moles of H₂O₂ (nfinaln_{final}) = Initial moles - Moles decomposed nfinal=2.026785 moles1.0 mole=1.026785 molesn_{final} = 2.026785 \text{ moles} - 1.0 \text{ mole} = 1.026785 \text{ moles}

6. New Molarity of H₂O₂ Solution: The problem states to assume no change in volume, so the volume of the solution remains 500 mL (0.5 L). New Molarity (MnewM_{new}) = Remaining moles of H₂O₂Volume of solution (in L)\frac{\text{Remaining moles of H₂O₂}}{\text{Volume of solution (in L)}} Mnew=1.026785 moles0.5 L=2.05357 MM_{new} = \frac{1.026785 \text{ moles}}{0.5 \text{ L}} = 2.05357 \text{ M}

Rounding to three significant figures (consistent with the given 45.4 V): Mnew2.05 MM_{new} \approx 2.05 \text{ M}

The final answer is 2.05 M\boxed{\text{2.05 M}}

Explanation of the solution:

  1. Calculated initial molarity of H₂O₂ using the given volume strength (45.4 V) and the conversion factor (Molarity = Volume Strength / 11.2).
  2. Determined the initial moles of H₂O₂ in the 500 ml solution.
  3. Calculated the moles of O₂ lost from the solution using the given volume (11.2 L) and molar volume at STP (22.4 L/mol).
  4. Used the stoichiometry of H₂O₂ decomposition (2H2O2O22H_2O_2 \to O_2) to find the moles of H₂O₂ that decomposed to produce the lost O₂.
  5. Subtracted the decomposed moles from the initial moles to find the remaining moles of H₂O₂.
  6. Calculated the new molarity by dividing the remaining moles by the original volume of the solution (assuming no volume change).