Solveeit Logo

Question

Question: $(1-x^2)\frac{dy}{dx}-xy=1$...

(1x2)dydxxy=1(1-x^2)\frac{dy}{dx}-xy=1

Answer

The solution to the differential equation is:

y=sin1(x)+C1x2y = \frac{\sin^{-1}(x) + C}{\sqrt{1-x^2}}

Explanation

Solution

The given differential equation is a first-order linear differential equation.

  1. Rewrite the equation in the standard form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x) by dividing by (1x2)(1-x^2). This yields P(x)=x1x2P(x) = -\frac{x}{1-x^2} and Q(x)=11x2Q(x) = \frac{1}{1-x^2}.

  2. Calculate the integrating factor IF=eP(x)dxIF = e^{\int P(x) dx}. The integral x1x2dx=12ln1x2=ln(1x2)\int -\frac{x}{1-x^2} dx = \frac{1}{2}\ln|1-x^2| = \ln(\sqrt{|1-x^2|}). Thus, IF=1x2IF = \sqrt{|1-x^2|}. Assuming 1x2>01-x^2 > 0, IF=1x2IF = \sqrt{1-x^2}.

  3. Apply the general solution formula y(IF)=Q(x)(IF)dx+Cy \cdot (IF) = \int Q(x) \cdot (IF) dx + C.

  4. Substitute Q(x)Q(x) and IFIF: y1x2=11x21x2dx+Cy \sqrt{1-x^2} = \int \frac{1}{1-x^2} \cdot \sqrt{1-x^2} dx + C.

  5. Simplify and evaluate the integral: 11x2dx=sin1(x)\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x).

  6. The solution becomes y1x2=sin1(x)+Cy \sqrt{1-x^2} = \sin^{-1}(x) + C.

  7. Solve for yy: y=sin1(x)+C1x2y = \frac{\sin^{-1}(x) + C}{\sqrt{1-x^2}}.