Solveeit Logo

Question

Question: \((1 + x)^{15} = C_{0} + C_{1}x + C_{2}x^{2} + ...... + C_{15}x^{15},\) divisible (\(C_{2} + 2C_{3} ...

(1+x)15=C0+C1x+C2x2+......+C15x15,(1 + x)^{15} = C_{0} + C_{1}x + C_{2}x^{2} + ...... + C_{15}x^{15}, divisible (C2+2C3+3C4+....+14C15=C_{2} + 2C_{3} + 3C_{4} + .... + 14C_{15} =).

A

By 13.214113.2^{14} - 1

B

By 2n1n+1\frac{2^{n} - 1}{n + 1}

C

By 2nn\frac{2^{n}}{n}

D

All of these

Answer

By 2n1n+1\frac{2^{n} - 1}{n + 1}

Explanation

Solution

Tr+1=n(n1)(n2)......(nr+1)r!(x)rT_{r + 1} = \frac{n(n - 1)(n - 2)......(n - r + 1)}{r!}(x)^{r}

nr+1<0n - r + 1 < 0

From above it is clear that r>325r > \frac{32}{5}is divisible by x2.