Solveeit Logo

Question

Question: \((1 + x + x^{2} + x^{3})^{5}\)term in expansion of \(x^{r}\lbrack 0 \leq r \leq (n - 1)\rbrack\) is...

(1+x+x2+x3)5(1 + x + x^{2} + x^{3})^{5}term in expansion of xr[0r(n1)]x^{r}\lbrack 0 \leq r \leq (n - 1)\rbrack is.

A

nCr(3r2n)nC_{r}(3^{r} - 2^{n})

B

nCr(3nr2nr)nC_{r}(3^{n - r} - 2^{n - r})

C

nCr(3r+2nr)nC_{r}(3^{r} + 2^{n - r})

D

None of these

Answer

nCr(3nr2nr)nC_{r}(3^{n - r} - 2^{n - r})

Explanation

Solution

Applying nCr+1=70nC_{r + 1} = 70for nCrnCr1=nr+1r=5628=2\frac{nC_{r}}{nC_{r - 1}} = \frac{n - r + 1}{r} = \frac{56}{28} = 2

Hence nCr+1nCr=nrr+1=7056=54\frac{nC_{r + 1}}{nC_{r}} = \frac{n - r}{r + 1} = \frac{70}{56} = \frac{5}{4}

n+1=3rn + 1 = 3r.