Solveeit Logo

Question

Question: (1 + x) (1 + x<sup>2</sup>) (1 + x<sup>4</sup>) .........(1 + x<sup>128</sup>) = \(\sum_{r = 0}^{n}x...

(1 + x) (1 + x2) (1 + x4) .........(1 + x128) = r=0nxr\sum_{r = 0}^{n}x^{r} then n85\frac{n}{85}=

A

2

B

3

C

1

D

9

Answer

3

Explanation

Solution

(1 + x) (1 + x2) (1+x4) ....(1+x128) = 1(1xn+1)1x\frac{1(1–x^{n + 1})}{1–x}

(1 – xn+1) = (1 – x)[(1 + x) (1 + x2) (1 + x4)....(1+ x128)]1 – xn+1

= 1 – x256

Ž n + 1 = 256 Ž n = 255 Ž n85\frac{n}{85} = 25585\frac{255}{85} = 3