Solveeit Logo

Question

Question: Solve for x: $\frac{1}{x-1} - \frac{4}{x-2} + \frac{4}{x-3} - \frac{1}{x-4} = \frac{1}{30}$ ...

Solve for x:

1x14x2+4x31x4=130\frac{1}{x-1} - \frac{4}{x-2} + \frac{4}{x-3} - \frac{1}{x-4} = \frac{1}{30}

Answer

-2, -1, 6, 7

Explanation

Solution

The given equation is 1x14x2+4x31x4=130\frac{1}{x-1} - \frac{4}{x-2} + \frac{4}{x-3} - \frac{1}{x-4} = \frac{1}{30} We group the terms as follows: (1x11x4)(4x24x3)=130\left( \frac{1}{x-1} - \frac{1}{x-4} \right) - \left( \frac{4}{x-2} - \frac{4}{x-3} \right) = \frac{1}{30} Combine the terms in each group: (x4)(x1)(x1)(x4)4(1x21x3)=130\frac{(x-4) - (x-1)}{(x-1)(x-4)} - 4 \left( \frac{1}{x-2} - \frac{1}{x-3} \right) = \frac{1}{30} x4x+1(x1)(x4)4((x3)(x2)(x2)(x3))=130\frac{x-4-x+1}{(x-1)(x-4)} - 4 \left( \frac{(x-3) - (x-2)}{(x-2)(x-3)} \right) = \frac{1}{30} 3x25x+44(x3x+2x25x+6)=130\frac{-3}{x^2 - 5x + 4} - 4 \left( \frac{x-3-x+2}{x^2 - 5x + 6} \right) = \frac{1}{30} 3x25x+44(1x25x+6)=130\frac{-3}{x^2 - 5x + 4} - 4 \left( \frac{-1}{x^2 - 5x + 6} \right) = \frac{1}{30} 3x25x+4+4x25x+6=130\frac{-3}{x^2 - 5x + 4} + \frac{4}{x^2 - 5x + 6} = \frac{1}{30} Let y=x25xy = x^2 - 5x. The equation becomes: 3y+4+4y+6=130\frac{-3}{y+4} + \frac{4}{y+6} = \frac{1}{30} Combine the terms on the left side: 3(y+6)+4(y+4)(y+4)(y+6)=130\frac{-3(y+6) + 4(y+4)}{(y+4)(y+6)} = \frac{1}{30} 3y18+4y+16y2+10y+24=130\frac{-3y - 18 + 4y + 16}{y^2 + 10y + 24} = \frac{1}{30} y2y2+10y+24=130\frac{y - 2}{y^2 + 10y + 24} = \frac{1}{30} Cross-multiply: 30(y2)=y2+10y+2430(y - 2) = y^2 + 10y + 24 30y60=y2+10y+2430y - 60 = y^2 + 10y + 24 Rearrange into a quadratic equation in yy: y2+10y30y+24+60=0y^2 + 10y - 30y + 24 + 60 = 0 y220y+84=0y^2 - 20y + 84 = 0 Factor the quadratic equation: (y6)(y14)=0(y - 6)(y - 14) = 0 So, y=6y = 6 or y=14y = 14. Substitute back y=x25xy = x^2 - 5x.

Case 1: x25x=6x^2 - 5x = 6 x25x6=0x^2 - 5x - 6 = 0 (x6)(x+1)=0(x - 6)(x + 1) = 0 So, x=6x = 6 or x=1x = -1.

Case 2: x25x=14x^2 - 5x = 14 x25x14=0x^2 - 5x - 14 = 0 (x7)(x+2)=0(x - 7)(x + 2) = 0 So, x=7x = 7 or x=2x = -2.

The possible values for xx are -2, -1, 6, and 7. We check that none of these values make the original denominators zero. The denominators are x1,x2,x3,x4x-1, x-2, x-3, x-4. None of the values -2, -1, 6, 7 are equal to 1, 2, 3, or 4. Thus, all four solutions are valid.