Question
Question: The roots of the equation $(b - c) x^2 + (c - a) x + (a - b) = 0$ are...
The roots of the equation (b−c)x2+(c−a)x+(a−b)=0 are

A
b−cc−a,1
B
b−ca−b,1
C
a−bb−c,1
D
a−bc−a,1
Answer
Option (B)
Explanation
Solution
Given the quadratic equation
(b−c)x2+(c−a)x+(a−b)=0.-
Substitute x=1:
(b−c)+(c−a)+(a−b)=0.Thus, x=1 is a root.
-
Factorizing, assume
(b−c)x2+(c−a)x+(a−b)=(x−1)(Ax+B).Expanding the right side:
Ax2+Bx−Ax−B=Ax2+(B−A)x−B.Matching coefficients:
A=b−c,B−A=c−a⟹B=c−a+(b−c)=b−a,−B=a−b. -
For the second root, set the factor Ax+B=0:
(b−c)x+(b−a)=0⟹x=b−c−(b−a)=b−ca−b.
Thus, the roots are b−ca−b and 1.