Solveeit Logo

Question

Question: The mean and standard deviation of 100 observations are 40 and 5.1, respectively. By mistake one obs...

The mean and standard deviation of 100 observations are 40 and 5.1, respectively. By mistake one observation is taken as 50 instead of 40. If the correct mean and the correct standard deviation are μ\mu and σ\sigma respectively, then 10(μ+σ)10(\mu + \sigma) is equal to

A

447

B

445

C

449

D

451

Answer

449

Explanation

Solution

Explanation of the solution:

  1. Calculate the incorrect sum of observations: Given incorrect mean (xˉinc\bar{x}_{inc}) = 40 and number of observations (n) = 100. xinc=n×xˉinc=100×40=4000\sum x_{inc} = n \times \bar{x}_{inc} = 100 \times 40 = 4000.

  2. Calculate the correct sum of observations: The observation 50 was taken instead of 40. xcorr=xinc(incorrect observation)+(correct observation)\sum x_{corr} = \sum x_{inc} - (\text{incorrect observation}) + (\text{correct observation}) xcorr=400050+40=3990\sum x_{corr} = 4000 - 50 + 40 = 3990.

  3. Calculate the correct mean (μ\mu): μ=xcorrn=3990100=39.9\mu = \frac{\sum x_{corr}}{n} = \frac{3990}{100} = 39.9.

  4. Calculate the incorrect sum of squares: Given incorrect standard deviation (σinc\sigma_{inc}) = 5.1. The formula for variance is σ2=x2n(xˉ)2\sigma^2 = \frac{\sum x^2}{n} - (\bar{x})^2. So, x2=n(σ2+xˉ2)\sum x^2 = n(\sigma^2 + \bar{x}^2). xinc2=100×((5.1)2+(40)2)\sum x_{inc}^2 = 100 \times ((5.1)^2 + (40)^2) xinc2=100×(26.01+1600)\sum x_{inc}^2 = 100 \times (26.01 + 1600) xinc2=100×1626.01=162601\sum x_{inc}^2 = 100 \times 1626.01 = 162601.

  5. Calculate the correct sum of squares: xcorr2=xinc2(incorrect observation)2+(correct observation)2\sum x_{corr}^2 = \sum x_{inc}^2 - (\text{incorrect observation})^2 + (\text{correct observation})^2 xcorr2=162601(50)2+(40)2\sum x_{corr}^2 = 162601 - (50)^2 + (40)^2 xcorr2=1626012500+1600\sum x_{corr}^2 = 162601 - 2500 + 1600 xcorr2=162601900=161701\sum x_{corr}^2 = 162601 - 900 = 161701.

  6. Calculate the correct standard deviation (σ\sigma): σ2=xcorr2n(μ)2\sigma^2 = \frac{\sum x_{corr}^2}{n} - (\mu)^2 σ2=161701100(39.9)2\sigma^2 = \frac{161701}{100} - (39.9)^2 σ2=1617.011592.01\sigma^2 = 1617.01 - 1592.01 σ2=25\sigma^2 = 25 σ=25=5\sigma = \sqrt{25} = 5.

  7. Calculate 10(μ+σ)10(\mu + \sigma): 10(μ+σ)=10(39.9+5)10(\mu + \sigma) = 10(39.9 + 5) 10(μ+σ)=10(44.9)10(\mu + \sigma) = 10(44.9) 10(μ+σ)=44910(\mu + \sigma) = 449.