Solveeit Logo

Question

Question: The coordinates of a point are $(a \tan (\theta + \alpha), b \tan (\theta + \beta))$, where $\theta$...

The coordinates of a point are (atan(θ+α),btan(θ+β))(a \tan (\theta + \alpha), b \tan (\theta + \beta)), where θ\theta is variable; prove that the locus of a point which divides it in any given ratio is a hyperbola.

Answer

The locus of the point is a hyperbola

Explanation

Solution

Let the coordinates of the point be P=(atan(θ+α),btan(θ+β))P = (a \tan (\theta + \alpha), b \tan (\theta + \beta)).

Let the point which divides the segment joining the origin O(0,0)O(0,0) and PP in the ratio m:nm:n be Q(x,y)Q(x,y). Using the section formula, the coordinates of QQ are:

x=n(0)+m(atan(θ+α))m+n=mam+ntan(θ+α)x = \frac{n(0) + m(a \tan (\theta + \alpha))}{m+n} = \frac{ma}{m+n} \tan (\theta + \alpha)

y=n(0)+m(btan(θ+β))m+n=mbm+ntan(θ+β)y = \frac{n(0) + m(b \tan (\theta + \beta))}{m+n} = \frac{mb}{m+n} \tan (\theta + \beta)

Let k=mm+nk = \frac{m}{m+n}. Since the ratio is given, kk is a constant.

So, x=katan(θ+α)x = ka \tan (\theta + \alpha) and y=kbtan(θ+β)y = kb \tan (\theta + \beta).

From these equations, we have:

tan(θ+α)=xka\tan (\theta + \alpha) = \frac{x}{ka}

tan(θ+β)=ykb\tan (\theta + \beta) = \frac{y}{kb}

We need to eliminate the variable θ\theta. Consider the difference of the angles (θ+α)(\theta + \alpha) and (θ+β)(\theta + \beta):

(θ+α)(θ+β)=αβ(\theta + \alpha) - (\theta + \beta) = \alpha - \beta.

Let A=θ+αA = \theta + \alpha and B=θ+βB = \theta + \beta. Then AB=αβA - B = \alpha - \beta.

We use the tangent subtraction formula:

tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

Substituting the expressions for tanA\tan A and tanB\tan B:

tan(αβ)=xkaykb1+xkaykb\tan(\alpha - \beta) = \frac{\frac{x}{ka} - \frac{y}{kb}}{1 + \frac{x}{ka} \cdot \frac{y}{kb}}

tan(αβ)=xbyakabkab+xykab\tan(\alpha - \beta) = \frac{\frac{xb - ya}{kab}}{\frac{kab + xy}{kab}}

tan(αβ)=xbyakab+xy\tan(\alpha - \beta) = \frac{xb - ya}{kab + xy}

Let C=tan(αβ)C = \tan(\alpha - \beta). Since α\alpha and β\beta are constants, CC is a constant.

C(kab+xy)=xbyaC(kab + xy) = xb - ya

Ckab+Cxy=xbyaCkab + Cxy = xb - ya

Rearranging the terms to get the equation of the locus:

Cxyxb+ay+Ckab=0Cxy - xb + ay + Ckab = 0

This is a general second-degree equation in xx and yy of the form Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, where A=0A=0, B=CB=C, C=0C=0, D=bD=-b, E=aE=a, and F=CkabF=Ckab.

The type of conic section represented by the general second-degree equation is determined by the discriminant B24ACB^2 - 4AC. In this case, the discriminant is C24(0)(0)=C2C^2 - 4(0)(0) = C^2.

If C=tan(αβ)0C = \tan(\alpha - \beta) \neq 0, i.e., αβ\alpha - \beta is not an integer multiple of π\pi, then C2>0C^2 > 0. A conic section with a positive discriminant is a hyperbola or a pair of intersecting lines.

The equation of the locus is Cxybx+ay+Ckab=0Cxy - bx + ay + Ckab = 0. If C0C \neq 0, we can rewrite this as xybCx+aCy+kab=0xy - \frac{b}{C}x + \frac{a}{C}y + kab = 0. This equation can be factored as (x+aC)(ybC)abC2+kab=0(x + \frac{a}{C})(y - \frac{b}{C}) - \frac{ab}{C^2} + kab = 0. (x+aC)(ybC)=abC2kab=abkabC2C2=ab(1kC2)C2(x + \frac{a}{C})(y - \frac{b}{C}) = \frac{ab}{C^2} - kab = \frac{ab - kabC^2}{C^2} = \frac{ab(1 - kC^2)}{C^2}. Let X=x+aCX = x + \frac{a}{C} and Y=ybCY = y - \frac{b}{C}. This is a translation of axes. The equation becomes XY=ab(1kC2)C2XY = \frac{ab(1 - kC^2)}{C^2}.

If a0a \neq 0, b0b \neq 0, C0C \neq 0, and 1kC201 - kC^2 \neq 0, this is the equation of a rectangular hyperbola with asymptotes X=0X=0 and Y=0Y=0.

If C=tan(αβ)=0C = \tan(\alpha - \beta) = 0, then αβ=nπ\alpha - \beta = n\pi for some integer nn. In this case, tan(θ+α)=tan(θ+β)\tan(\theta + \alpha) = \tan(\theta + \beta). The original equations become x=katan(θ+α)x = ka \tan(\theta + \alpha) and y=kbtan(θ+α)y = kb \tan(\theta + \alpha). So, xka=ykb\frac{x}{ka} = \frac{y}{kb}, which implies kbx=kaykbx = kay, or bxay=0bx - ay = 0. This is the equation of a straight line passing through the origin. A straight line is considered a degenerate hyperbola (a pair of intersecting lines where the intersection point is at infinity).

If a=0a=0, the original point is (0,btan(θ+β))(0, b \tan(\theta + \beta)). The locus of the dividing point is (0,kbtan(θ+β))(0, kb \tan(\theta + \beta)). If θ\theta is variable, tan(θ+β)\tan(\theta+\beta) can take any real value, so the locus is the entire y-axis x=0x=0. This is a degenerate hyperbola. If b=0b=0, the original point is (atan(θ+α),0)(a \tan(\theta + \alpha), 0). The locus of the dividing point is (katan(θ+α),0)(ka \tan(\theta + \alpha), 0). This is the entire x-axis y=0y=0. This is a degenerate hyperbola.

In general, assuming a0a \neq 0, b0b \neq 0, and αβ\alpha - \beta is not an integer multiple of π\pi, the locus is a non-degenerate hyperbola. The equation Cxybx+ay+Ckab=0Cxy - bx + ay + Ckab = 0 represents a hyperbola.