Solveeit Logo

Question

Question: The air pollutant NO is produced in automobile engines from the high temperature reaction $N_2(g) + ...

The air pollutant NO is produced in automobile engines from the high temperature reaction N2(g)+O2(g)2NO(g);Kc=16N_2(g) + O_2(g) \rightleftharpoons 2NO(g); K_c=16 at 2300 K. If the initial concentrations of N2N_2 and O2O_2 at 2300 K are both 1.5 M, what are the concentrations of N2N_2 (in M) when the reaction mixture reaches equilibrium?

A

0.5 M

B

1.0 M

C

1.5 M

D

0.75 M

Answer

0.5 M

Explanation

Solution

For the reaction N2(g)+O2(g)2NO(g)N_2(g) + O_2(g) \rightleftharpoons 2NO(g), with Kc=16K_c=16 and initial concentrations [N2]0=[O2]0=1.5[N_2]_0 = [O_2]_0 = 1.5 M, we set up an ICE table. Let xx be the decrease in [N2][N_2]. The equilibrium concentrations are [N2]eq=1.5x[N_2]_{eq} = 1.5-x, [O2]eq=1.5x[O_2]_{eq} = 1.5-x, and [NO]eq=2x[NO]_{eq} = 2x. The equilibrium constant expression is Kc=[NO]2[N2][O2]K_c = \frac{[NO]^2}{[N_2][O_2]}. Substituting the equilibrium concentrations: 16=(2x)2(1.5x)216 = \frac{(2x)^2}{(1.5-x)^2} Taking the square root of both sides gives 4=2x1.5x4 = \frac{2x}{1.5-x}. Solving for xx: 4(1.5x)=2x    64x=2x    6x=6    x=14(1.5-x) = 2x \implies 6 - 4x = 2x \implies 6x = 6 \implies x = 1. The equilibrium concentration of N2N_2 is [N2]eq=1.5x=1.51=0.5[N_2]_{eq} = 1.5 - x = 1.5 - 1 = 0.5 M.