Solveeit Logo

Question

Question: \(1{\text{mol}}\) benzene \(\left( {{{\text{P}}^ \circ }_{{\text{benzene}}} = 42{\text{mm}}} \right)...

1mol1{\text{mol}} benzene (Pbenzene=42mm)\left( {{{\text{P}}^ \circ }_{{\text{benzene}}} = 42{\text{mm}}} \right) and 2mol2{\text{mol}} toluene (Ptoluene=36mm)\left( {{{\text{P}}^ \circ }_{{\text{toluene}}} = 36{\text{mm}}} \right) will have:
A. total pressure of 38mm38{\text{mm}}
B. mole fraction of vapor of benzene above liquid mixture is 719\dfrac{7}{{19}}
C. positive deviation from Raoult’s law.
D. negative deviation from Raoult’s law.

Explanation

Solution

The vapor pressure of the two different molecules is given in the question and the number of moles is also given. By using the Raoult’s formula, and substituting the given values in that formula. We can get the total pressure and also mole fraction of the two mixtures. Thus, we can find the correct answer.

Complete step by step answer:
The data given in the question are,
Vapor pressure of benzene, Pbenzene=42mm{{\text{P}}^ \circ }_{{\text{benzene}}} = 42{\text{mm}}
Vapor pressure of toluene, Ptoluene=36mm{{\text{P}}^ \circ }_{{\text{toluene}}} = 36{\text{mm}}
Number of moles of benzene=1mol = 1{\text{mol}}
Number of moles of toluene=2mol = 2{\text{mol}}

Raoult’s law: Raoult’s law states that the vapor pressure of a solution is directly proportional to the mole fraction of solvent. The solution which obeys Raoult’s law is called the ideal solution.

The solution of benzene and toluene is an ideal solution. Both of them have similar molecular structures. In this solution, the interactions between toluene and benzene are almost equal to benzene-benzene interactions and toluene-toluene interactions. This is because of the similarity in their molecular structures. Thus, we can say that there is no deviation in Raoult’s law. Therefore, options C and D are removed.
It is given that vapor pressure of benzene, Pbenzene=42mm{{\text{P}}^ \circ }_{{\text{benzene}}} = 42{\text{mm}}
Vapor pressure of toluene, Ptoluene=36mm{{\text{P}}^ \circ }_{{\text{toluene}}} = 36{\text{mm}}
Number of moles of benzene =1mol = 1{\text{mol}}
Number of moles of toluene =2mol = 2{\text{mol}}
Mole fraction of benzene =number  of  moles  of  benzenenumber  of  total  solution=1mol1mol+2mol=1mol3mol=13 = \dfrac{{{\text{number}}\;{\text{of}}\;{\text{moles}}\;{\text{of}}\;{\text{benzene}}}}{{{\text{number}}\;{\text{of}}\;{\text{total}}\;{\text{solution}}}} = \dfrac{{1{\text{mol}}}}{{1{\text{mol}} + 2{\text{mol}}}} = \dfrac{{1{\text{mol}}}}{{3{\text{mol}}}} = \dfrac{1}{3}
Mole fraction of toluene =number  of  moles  of  toluenenumber  of  total  solution=2mol1mol+2mol=2mol3mol=23 = \dfrac{{{\text{number}}\;{\text{of}}\;{\text{moles}}\;{\text{of}}\;{\text{toluene}}}}{{{\text{number}}\;{\text{of}}\;{\text{total}}\;{\text{solution}}}} = \dfrac{{2{\text{mol}}}}{{1{\text{mol}} + 2{\text{mol}}}} = \dfrac{{2{\text{mol}}}}{{3{\text{mol}}}} = \dfrac{2}{3}
Now we can calculate the total pressure. According to Raoult’s law,
Ptotal=PbenzeneXbenzene+PtolueneXtoluene{{\text{P}}_{{\text{total}}}} = {{\text{P}}^ \circ }_{{\text{benzene}}}{{\text{X}}_{{\text{benzene}}}} + {{\text{P}}^ \circ }_{{\text{toluene}}}{{\text{X}}_{{\text{toluene}}}}
Substituting the values in equation, we get
Ptotal=42mm×13+36mm×23\Rightarrow {{\text{P}}_{{\text{total}}}} = 42{\text{mm}} \times \dfrac{1}{3} + 36{\text{mm}} \times \dfrac{2}{3}
On further simplifying,
Ptotal=14mm+24mm = 38mm\Rightarrow {{\text{P}}_{{\text{total}}}} = 14{\text{mm}} + 24{\text{mm = 38mm}}
Thus, option A is correct.
Now considering option B, we have to calculate the mole fraction of benzene in terms of the ratio of vapor pressure of solvent solution.
According to Raoult’s law, Psoln=XsolventPsolvent{{\text{P}}_{{\text{soln}}}} = {{\text{X}}_{{\text{solvent}}}}{{\text{P}}_{{\text{solvent}}}}
Let Xbenzene{{\text{X}}_{{\text{benzene}}}}be the mole fraction of benzene. Here the solvent is benzene.
Xbenzene=PbenzenePtotal=Pbenzene×XbenzenePtotal=42mm×1338mm{{\text{X}}_{{\text{benzene}}}} = \dfrac{{{{\text{P}}_{{\text{benzene}}}}}}{{{{\text{P}}_{{\text{total}}}}}} = \dfrac{{{{\text{P}}^ \circ }_{{\text{benzene}}} \times {{\text{X}}^ \circ }_{{\text{benzene}}}}}{{{{\text{P}}_{{\text{total}}}}}} = \dfrac{{42{\text{mm}} \times \dfrac{1}{3}}}{{38{\text{mm}}}}
On solving, we get
Xbenzene=14mm38mm=719{{\text{X}}_{{\text{benzene}}}} = \dfrac{{14{\text{mm}}}}{{38{\text{mm}}}} = \dfrac{7}{{19}}

\therefore Both options A and B are correct.

Additional information- Vapor pressure of a liquid is much different in a solution than it is in pure liquid. The dissolved non-volatile solute lowers the vapor pressure of a solvent.

Note:
Vapor pressure is the pressure acted over a substance at which vapors are formed. When a plot of vapor pressure of solution, Psoln{{\text{P}}_{{\text{soln}}}}, against mole fraction of solvent, Xsolvent{{\text{X}}_{{\text{solvent}}}}, is represented, it gives a straight line with a slope of Psolvent{{\text{P}}_{{\text{solvent}}}}.