Solveeit Logo

Question

Question: Range of the function $f(x) = \log_2(2-\log_{\sqrt{2}}(16\sin^2 x + 1))$ is :...

Range of the function f(x)=log2(2log2(16sin2x+1))f(x) = \log_2(2-\log_{\sqrt{2}}(16\sin^2 x + 1)) is :

Answer

(,1](-\infty, 1]

Explanation

Solution

Let the given function be f(x)=log2(2log2(16sin2x+1))f(x) = \log_2(2-\log_{\sqrt{2}}(16\sin^2 x + 1)).

For the function to be defined, the following conditions must be met:

  1. The argument of the inner logarithm must be positive: 16sin2x+1>016\sin^2 x + 1 > 0. Since sin2x0\sin^2 x \ge 0 for any real xx, 16sin2x016\sin^2 x \ge 0, and thus 16sin2x+1116\sin^2 x + 1 \ge 1. This condition is always satisfied.

  2. The argument of the outer logarithm must be positive: 2log2(16sin2x+1)>02-\log_{\sqrt{2}}(16\sin^2 x + 1) > 0. 2>log2(16sin2x+1)2 > \log_{\sqrt{2}}(16\sin^2 x + 1). Since the base of the logarithm 2=21/2>1\sqrt{2} = 2^{1/2} > 1, the inequality can be rewritten as: (2)2>16sin2x+1(\sqrt{2})^2 > 16\sin^2 x + 1 2>16sin2x+12 > 16\sin^2 x + 1 1>16sin2x1 > 16\sin^2 x sin2x<116\sin^2 x < \frac{1}{16}.

This condition sin2x<116\sin^2 x < \frac{1}{16} defines the domain of the function f(x)f(x).

Now, let's determine the range of the expression 16sin2x+116\sin^2 x + 1 for the values of xx satisfying sin2x<116\sin^2 x < \frac{1}{16}. We know that 0sin2x<1160 \le \sin^2 x < \frac{1}{16}. Multiplying by 16, we get 016sin2x<16×116=10 \le 16\sin^2 x < 16 \times \frac{1}{16} = 1. Adding 1 to all parts of the inequality, we get 0+116sin2x+1<1+10 + 1 \le 16\sin^2 x + 1 < 1 + 1. So, 116sin2x+1<21 \le 16\sin^2 x + 1 < 2.

Let u=16sin2x+1u = 16\sin^2 x + 1. The range of uu for the domain of f(x)f(x) is [1,2)[1, 2).

Now consider the term log2(u)\log_{\sqrt{2}}(u). The base of the logarithm is 2=21/2\sqrt{2} = 2^{1/2}. log2(u)=log21/2(u)=log2ulog221/2=log2u1/2=2log2u\log_{\sqrt{2}}(u) = \log_{2^{1/2}}(u) = \frac{\log_2 u}{\log_2 2^{1/2}} = \frac{\log_2 u}{1/2} = 2\log_2 u.

Since u[1,2)u \in [1, 2) and the base of the logarithm (2) is greater than 1, log2u\log_2 u is an increasing function. When u=1u=1, 2log2(1)=2×0=02\log_2(1) = 2 \times 0 = 0. As uu approaches 2 from the left (u2u \to 2^-), 2log2u2\log_2 u approaches 2log2(2)=2×1=22\log_2(2) = 2 \times 1 = 2. So, the range of log2(16sin2x+1)\log_{\sqrt{2}}(16\sin^2 x + 1) is [0,2)[0, 2).

Let v=log2(16sin2x+1)v = \log_{\sqrt{2}}(16\sin^2 x + 1). The range of vv is [0,2)[0, 2). The argument of the outer logarithm is 2v2 - v. Since v[0,2)v \in [0, 2), the range of v-v is (2,0](-2, 0]. The range of 2v2 - v is 2+(2,0]=(0,2]2 + (-2, 0] = (0, 2].

Let w=2log2(16sin2x+1)w = 2 - \log_{\sqrt{2}}(16\sin^2 x + 1). The range of ww is (0,2](0, 2].

Finally, the function is f(x)=log2(w)f(x) = \log_2(w). Since w(0,2]w \in (0, 2] and the base of the logarithm (2) is greater than 1, log2w\log_2 w is an increasing function. As ww approaches 0 from the right (w0+w \to 0^+), log2w\log_2 w approaches -\infty. When w=2w = 2, log2w=log22=1\log_2 w = \log_2 2 = 1. So, the range of log2(w)\log_2(w) for w(0,2]w \in (0, 2] is (,1](-\infty, 1].

Therefore, the range of the function f(x)f(x) is (,1](-\infty, 1].