Solveeit Logo

Question

Question: Range of the function $f(x) = \log_2(2 - \log_5(16\sin^2x + 1))$ is :...

Range of the function f(x)=log2(2log5(16sin2x+1))f(x) = \log_2(2 - \log_5(16\sin^2x + 1)) is :

Answer

[log2(2log5(17)),1][\log_2(2 - \log_5(17)), 1]

Explanation

Solution

Let the given function be f(x)=log2(2log5(16sin2x+1))f(x) = \log_2(2 - \log_5(16\sin^2x + 1)).

For the function to be defined, the following conditions must be met:

  1. The argument of the inner logarithm must be positive: 16sin2x+1>016\sin^2x + 1 > 0.
    Since 0sin2x10 \le \sin^2x \le 1 for any real xx, we have 16sin2x016\sin^2x \ge 0. Thus, 16sin2x+1116\sin^2x + 1 \ge 1. This condition is always satisfied for all real xx.

  2. The argument of the outer logarithm must be positive: 2log5(16sin2x+1)>02 - \log_5(16\sin^2x + 1) > 0.
    2>log5(16sin2x+1)2 > \log_5(16\sin^2x + 1).
    Since the base of the logarithm is 5, which is greater than 1, the inequality can be rewritten as:
    52>16sin2x+15^2 > 16\sin^2x + 1
    25>16sin2x+125 > 16\sin^2x + 1
    24>16sin2x24 > 16\sin^2x
    sin2x<2416=32\sin^2x < \frac{24}{16} = \frac{3}{2}.
    Since the range of sin2x\sin^2x is [0,1][0, 1] for any real xx, the condition sin2x<32\sin^2x < \frac{3}{2} is always satisfied because 1<321 < \frac{3}{2}.
    Thus, the domain of the function f(x)f(x) is all real numbers xx.

Now, let's determine the range of the function.
We know that for any real xx, 0sin2x10 \le \sin^2x \le 1.
Let u=16sin2x+1u = 16\sin^2x + 1.
Multiplying the inequality 0sin2x10 \le \sin^2x \le 1 by 16, we get 016sin2x160 \le 16\sin^2x \le 16.
Adding 1 to all parts, we get 0+116sin2x+116+10 + 1 \le 16\sin^2x + 1 \le 16 + 1, which means 1u171 \le u \le 17.
The range of u=16sin2x+1u = 16\sin^2x + 1 is [1,17][1, 17].

Next, consider the term log5(u)=log5(16sin2x+1)\log_5(u) = \log_5(16\sin^2x + 1).
Since u[1,17]u \in [1, 17] and the base of the logarithm (5) is greater than 1, log5(u)\log_5(u) is an increasing function.
The minimum value of log5(u)\log_5(u) occurs when u=1u=1, which is log5(1)=0\log_5(1) = 0.
The maximum value of log5(u)\log_5(u) occurs when u=17u=17, which is log5(17)\log_5(17).
The range of log5(16sin2x+1)\log_5(16\sin^2x + 1) is [log5(1),log5(17)]=[0,log5(17)][\log_5(1), \log_5(17)] = [0, \log_5(17)].

Now, consider the argument of the outer logarithm, w=2log5(16sin2x+1)w = 2 - \log_5(16\sin^2x + 1).
Let v=log5(16sin2x+1)v = \log_5(16\sin^2x + 1). The range of vv is [0,log5(17)][0, \log_5(17)].
The expression is 2v2 - v.
The minimum value of 2v2 - v occurs when vv is maximum: 2log5(17)2 - \log_5(17).
The maximum value of 2v2 - v occurs when vv is minimum: 20=22 - 0 = 2.
The range of w=2log5(16sin2x+1)w = 2 - \log_5(16\sin^2x + 1) is [2log5(17),2][2 - \log_5(17), 2].
We need to verify that this range is positive, as required by the domain of log2\log_2.
Since 51=55^1 = 5 and 52=255^2 = 25, we know that 1<log5(17)<21 < \log_5(17) < 2.
Therefore, 22<2log5(17)<212 - 2 < 2 - \log_5(17) < 2 - 1, which means 0<2log5(17)<10 < 2 - \log_5(17) < 1.
The range [2log5(17),2][2 - \log_5(17), 2] is indeed a subset of (0,)(0, \infty).

Finally, consider the function f(x)=log2(w)=log2(2log5(16sin2x+1))f(x) = \log_2(w) = \log_2(2 - \log_5(16\sin^2x + 1)).
Since w[2log5(17),2]w \in [2 - \log_5(17), 2] and the base of the logarithm (2) is greater than 1, log2(w)\log_2(w) is an increasing function.
The minimum value of log2(w)\log_2(w) occurs when ww is minimum: log2(2log5(17))\log_2(2 - \log_5(17)).
The maximum value of log2(w)\log_2(w) occurs when ww is maximum: log2(2)=1\log_2(2) = 1.
The range of f(x)f(x) is [log2(2log5(17)),1][\log_2(2 - \log_5(17)), 1].