Solveeit Logo

Question

Question: Molality and mole-fraction of 3.0 g of urea (mol mass = 60) per 250 g water will be:-...

Molality and mole-fraction of 3.0 g of urea (mol mass = 60) per 250 g water will be:-

A

0-2 m and 00-359

B

0-2 m and 0-00359

C

2.0 m and 0-0359

D

2.0 m and 0-00359.

Answer

0-2 m and 0-00359

Explanation

Solution

Molality and mole fraction are concentration terms used in chemistry.

1. Calculate moles of solute (urea) and solvent (water):

  • Moles of urea (solute):

    Given mass of urea = 3.0 g Molar mass of urea = 60 g/mol Moles of urea (nurean_{\text{urea}}) = MassMolar Mass=3.0 g60 g/mol=0.05 mol\frac{\text{Mass}}{\text{Molar Mass}} = \frac{3.0 \text{ g}}{60 \text{ g/mol}} = 0.05 \text{ mol}

  • Moles of water (solvent):

    Given mass of water = 250 g Molar mass of water (H2_2O) = 18 g/mol Moles of water (nwatern_{\text{water}}) = MassMolar Mass=250 g18 g/mol13.888... mol\frac{\text{Mass}}{\text{Molar Mass}} = \frac{250 \text{ g}}{18 \text{ g/mol}} \approx 13.888... \text{ mol}

2. Calculate Molality (m):

Molality is defined as the number of moles of solute per kilogram of solvent.

  • Mass of solvent (water) in kg = 250 g×1 kg1000 g=0.250 kg250 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.250 \text{ kg}
  • Molality (m) = Moles of soluteMass of solvent in kg=0.05 mol0.250 kg=0.2 mol/kg=0.2 m\frac{\text{Moles of solute}}{\text{Mass of solvent in kg}} = \frac{0.05 \text{ mol}}{0.250 \text{ kg}} = 0.2 \text{ mol/kg} = 0.2 \text{ m}

3. Calculate Mole fraction of urea (XureaX_{\text{urea}}):

Mole fraction of a component is the ratio of the moles of that component to the total moles of all components in the solution.

  • Total moles (ntotaln_{\text{total}}) = Moles of urea + Moles of water ntotal=0.05 mol+13.888... mol=13.938... moln_{\text{total}} = 0.05 \text{ mol} + 13.888... \text{ mol} = 13.938... \text{ mol}
  • Mole fraction of urea (XureaX_{\text{urea}}) = Moles of ureaTotal moles=0.05 mol13.938... mol0.003587\frac{\text{Moles of urea}}{\text{Total moles}} = \frac{0.05 \text{ mol}}{13.938... \text{ mol}} \approx 0.003587
  • Rounding to five decimal places, Xurea0.00359X_{\text{urea}} \approx 0.00359

Comparing the calculated values with the given options, the option "0-2 m and 0-00359" matches our results (assuming the hyphen '0-' represents a decimal point).