Solveeit Logo

Question

Question: $\lim_{y\to 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}$...

limy01+1+y42y4\lim_{y\to 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}

A

0

B

122\frac{1}{2\sqrt{2}}

C

142\frac{1}{4\sqrt{2}}

D

122(2+1)\frac{1}{2\sqrt{2}(\sqrt{2}+1)}

Answer

142\frac{1}{4\sqrt{2}}

Explanation

Solution

To evaluate the limit:

limy01+1+y42y4\lim_{y\to 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}

  1. Approximate 1+y4\sqrt{1+y^4} for small yy: 1+y41+y42\sqrt{1+y^4} \approx 1 + \frac{y^4}{2}

  2. Substitute into the outer square root: 1+1+y41+(1+y42)=2+y42\sqrt{1+\sqrt{1+y^4}} \approx \sqrt{1 + (1+\frac{y^4}{2})} = \sqrt{2 + \frac{y^4}{2}}

  3. Use the linear approximation for the square root: 2+ϵ2+ϵ22\sqrt{2+\epsilon} \approx \sqrt{2} + \frac{\epsilon}{2\sqrt{2}}, where ϵ=y42\epsilon = \frac{y^4}{2}. Thus, 2+y422+y4222=2+y442\sqrt{2+\frac{y^4}{2}} \approx \sqrt{2} + \frac{\frac{y^4}{2}}{2\sqrt{2}} = \sqrt{2} + \frac{y^4}{4\sqrt{2}}

  4. Subtract 2\sqrt{2} and divide by y4y^4: 1+1+y42y4y442y4=142\frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4} \approx \frac{\frac{y^4}{4\sqrt{2}}}{y^4} = \frac{1}{4\sqrt{2}}

Therefore, the limit is 142\frac{1}{4\sqrt{2}}.