Question
Question: $\lim_{y\to 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}$...
limy→0y41+1+y4−2
A
0
B
221
C
421
D
22(2+1)1
Answer
421
Explanation
Solution
To evaluate the limit:
limy→0y41+1+y4−2
-
Approximate 1+y4 for small y: 1+y4≈1+2y4
-
Substitute into the outer square root: 1+1+y4≈1+(1+2y4)=2+2y4
-
Use the linear approximation for the square root: 2+ϵ≈2+22ϵ, where ϵ=2y4. Thus, 2+2y4≈2+222y4=2+42y4
-
Subtract 2 and divide by y4: y41+1+y4−2≈y442y4=421
Therefore, the limit is 421.