Solveeit Logo

Question

Question: Let sequence $\{a_n\}$ satisfy $a_1 = 1, a_2 = 4, a_3 = 5$ and $a_n + a_{n-1} + a_{n-2} + a_{n-3} = ...

Let sequence {an}\{a_n\} satisfy a1=1,a2=4,a3=5a_1 = 1, a_2 = 4, a_3 = 5 and an+an1+an2+an3=n2n4a_n + a_{n-1} + a_{n-2} + a_{n-3} = n^2 \forall n \ge 4. If sum of digits of a202110\frac{\text{sum of digits of } a_{2021}}{10} is P then P is

Answer

1.9

Explanation

Solution

The sequence {an}\{a_n\} is defined by a1=1,a2=4,a3=5a_1 = 1, a_2 = 4, a_3 = 5 and an+an1+an2+an3=n2a_n + a_{n-1} + a_{n-2} + a_{n-3} = n^2 for n4n \ge 4. The general solution is found to be an=n2+3n+15cos(πn2)sin(πn2)4a_n = \frac{n^2+3n+1 - 5\cos(\frac{\pi n}{2}) - \sin(\frac{\pi n}{2})}{4}. For n=2021n=2021, we have cos(2021π2)=0\cos(\frac{2021\pi}{2}) = 0 and sin(2021π2)=1\sin(\frac{2021\pi}{2}) = 1. So, a2021=20212+3(2021)+15(0)14=2021(2021+3)4=2021×20244=2021×506=1022626a_{2021} = \frac{2021^2 + 3(2021) + 1 - 5(0) - 1}{4} = \frac{2021(2021+3)}{4} = \frac{2021 \times 2024}{4} = 2021 \times 506 = 1022626. The sum of the digits of a2021a_{2021} is 1+0+2+2+6+2+6=191+0+2+2+6+2+6 = 19. P is given by sum of digits of a202110=1910=1.9\frac{\text{sum of digits of } a_{2021}}{10} = \frac{19}{10} = 1.9.