Solveeit Logo

Question

Question: \[1 + \left( \frac{1}{2} + \frac{1}{3} \right)\frac{1}{4} + \left( \frac{1}{4} + \frac{1}{5} \right)...

1+(12+13)14+(14+15)142+(16+17)143+....=1 + \left( \frac{1}{2} + \frac{1}{3} \right)\frac{1}{4} + \left( \frac{1}{4} + \frac{1}{5} \right)\frac{1}{4^{2}} + \left( \frac{1}{6} + \frac{1}{7} \right)\frac{1}{4^{3}} + ....\infty =

A

loge(23)\log_{e}(2\sqrt{3})

B

2loge22\log_{e}2

C

loge2\log_{e}2

D

loge(23)\log_{e}\left( \frac{2}{\sqrt{3}} \right)

Answer

loge(23)\log_{e}(2\sqrt{3})

Explanation

Solution

exey2\frac{e^{x} - e^{y}}{2}

1+aba+12!(aba)2+13!(aba)3+......=1 + \frac{a - b}{a} + \frac{1}{2!}\left( \frac{a - b}{a} \right)^{2} + \frac{1}{3!}\left( \frac{a - b}{a} \right)^{3} + ......\infty =

x=x =

eae^{a}.