Solveeit Logo

Question

Question: 1 kg of ice at – 10 ° C is mixed with 4 . 4 kg of water at 30 ° C . The final temperature of mixture...

1 kg of ice at – 10 ° C is mixed with 4 . 4 kg of water at 30 ° C . The final temperature of mixture is

A

235/27 °C

B

10 °C

C

0 °C

D

30 °C

Answer

235/27 °C

Explanation

Solution

  1. Heat to warm ice to 0°C (Q1Q_1): Q1=micesiceΔT=1000 g0.5 cal/g°C(0(10)C)=5000Q_1 = m_{ice} \cdot s_{ice} \cdot \Delta T = 1000 \text{ g} \cdot 0.5 \text{ cal/g°C} \cdot (0 - (-10)^\circ\text{C}) = 5000 cal.

  2. Heat to melt ice at 0°C (Q2Q_2): Q2=miceLf=1000 g80 cal/g=80000Q_2 = m_{ice} \cdot L_f = 1000 \text{ g} \cdot 80 \text{ cal/g} = 80000 cal. Total heat to convert ice to water at 0°C = Q1+Q2=85000Q_1 + Q_2 = 85000 cal.

  3. Heat available from water cooling to 0°C (Qwater_to_0Q_{water\_to\_0}): Qwater_to_0=mwaterswaterΔT=4400 g1 cal/g°C(30C0C)=132000Q_{water\_to\_0} = m_{water} \cdot s_{water} \cdot \Delta T = 4400 \text{ g} \cdot 1 \text{ cal/g°C} \cdot (30^\circ\text{C} - 0^\circ\text{C}) = 132000 cal.

  4. Since 132000132000 cal >85000> 85000 cal, all ice melts, and the final temperature will be above 0°C.

  5. Heat balance for equilibrium temperature TT: Heat lost by water = Heat gained by ice (to melt) + Heat gained by melted ice (to reach final temperature TT) mwaterswater(30CT)=(Q1+Q2)+miceswater(T0C)m_{water} \cdot s_{water} \cdot (30^\circ\text{C} - T) = (Q_1 + Q_2) + m_{ice} \cdot s_{water} \cdot (T - 0^\circ\text{C}) 44001(30T)=85000+10001T4400 \cdot 1 \cdot (30 - T) = 85000 + 1000 \cdot 1 \cdot T 1320004400T=85000+1000T132000 - 4400T = 85000 + 1000T 47000=5400T47000 = 5400T T=470005400=47054=23527CT = \frac{47000}{5400} = \frac{470}{54} = \frac{235}{27}^\circ\text{C}