Solveeit Logo

Question

Mathematics Question on Sum of the Measures of the Exterior Angles of a Polygon

  1. Is it possible to have a regular polygon with measure of each exterior angle as 2222\degree?
  2. Can it be an interior angle of a regular polygon? Why?
Answer

The sum of all exterior angles of all polygons is 360360\degree.
Also, in a regular polygon, each exterior
angle is of the same measure.
Hence, if 360360\degree is a perfect multiple of the given exterior angle, then the given polygon will be possible.
(a) Exterior angle = 2222\degree
360360\degree is not a perfect multiple of 2222\degree.

Hence, such polygon is not possible.


(b) Interior angle = 2222\degree
Exterior angle = 180°22°=158°180° - 22° = 158°
Such a polygon is not possible as 360° is not a perfect multiple of 158°158°