Question
Question: If the matrix $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, when I is ...
If the matrix A=[1−521] and A−1=xA+yI, when I is a unit matrix of order 2, then the value of 2x + 3y is

A
118
B
114
C
11−8
D
11−4
Answer
114
Explanation
Solution
First, find A−1 directly.
Determinant: detA=1⋅1−2(−5)=11.
Adjugate: adj(A)=(15−21).
Thus, A−1=111(15−21).
Write xA+yI=(x+y−5x2xx+y). Equate entries:
x+y=111 and 2x=11−2 ⟹ x=−111.
Then, y=111−x=111+111=112.
Hence, 2x+3y=2(−111)+3(112)=11−2+6=114.