Solveeit Logo

Question

Question: If the matrix $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, when I is ...

If the matrix A=[1251]A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix} and A1=xA+yIA^{-1} = xA + yI, when I is a unit matrix of order 2, then the value of 2x + 3y is

A

811\frac{8}{11}

B

411\frac{4}{11}

C

811\frac{-8}{11}

D

411\frac{-4}{11}

Answer

411\frac{4}{11}

Explanation

Solution

First, find A1A^{-1} directly.

Determinant: detA=112(5)=11\det A =1\cdot1-2(-5)=11.

Adjugate: adj(A)=(1251)\operatorname{adj}(A)=\begin{pmatrix} 1&-2\\5&1\end{pmatrix}.

Thus, A1=111(1251)A^{-1}=\frac{1}{11}\begin{pmatrix} 1&-2\\5&1\end{pmatrix}.

Write xA+yI=(x+y2x5xx+y)xA+yI = \begin{pmatrix} x+y &2x\\-5x &x+y \end{pmatrix}. Equate entries:

x+y=111x+y=\frac{1}{11} and 2x=2112x=\frac{-2}{11}x=111x=-\frac{1}{11}.

Then, y=111x=111+111=211y=\frac{1}{11} - x=\frac{1}{11}+\frac{1}{11}=\frac{2}{11}.

Hence, 2x+3y=2(111)+3(211)=2+611=4112x+3y=2\Bigl(-\frac{1}{11}\Bigr)+3\Bigl(\frac{2}{11}\Bigr)=\frac{-2+6}{11}=\frac{4}{11}.