Solveeit Logo

Question

Question: If acute angle A = 3B and $\sin A = \frac{4}{5}$ then $\frac{3 \sec B-4 \csc B}{2}$ is...

If acute angle A = 3B and sinA=45\sin A = \frac{4}{5} then

3secB4cscB2\frac{3 \sec B-4 \csc B}{2} is

Answer

-5

Explanation

Solution

The problem asks us to evaluate the expression 3secB4cscB2\frac{3 \sec B-4 \csc B}{2}, given that A is an acute angle, A = 3B, and sinA=45\sin A = \frac{4}{5}.

Step 1: Find cosA\cos A. Given sinA=45\sin A = \frac{4}{5}. Since A is an acute angle, we can use the identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1. cos2A=1sin2A=1(45)2=11625=251625=925\cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25}. Since A is acute, cosA\cos A must be positive. cosA=925=35\cos A = \sqrt{\frac{9}{25}} = \frac{3}{5}.

Step 2: Use the relation A = 3B. We have sinA=sin(3B)=45\sin A = \sin(3B) = \frac{4}{5} and cosA=cos(3B)=35\cos A = \cos(3B) = \frac{3}{5}. Consider the identity for sin(AB)\sin(A-B): sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B. Substitute A=3BA = 3B: sin(3BB)=sin(2B)\sin(3B-B) = \sin(2B). So, sin(2B)=sinAcosBcosAsinB\sin(2B) = \sin A \cos B - \cos A \sin B. Substitute the values of sinA\sin A and cosA\cos A: sin(2B)=45cosB35sinB\sin(2B) = \frac{4}{5} \cos B - \frac{3}{5} \sin B.

Step 3: Use the double angle identity for sin(2B)\sin(2B). We know sin(2B)=2sinBcosB\sin(2B) = 2 \sin B \cos B. Equating the two expressions for sin(2B)\sin(2B): 2sinBcosB=45cosB35sinB2 \sin B \cos B = \frac{4}{5} \cos B - \frac{3}{5} \sin B.

Step 4: Rearrange the equation to find a relationship between sinB\sin B and cosB\cos B. Multiply the entire equation by 5 to eliminate the denominators: 10sinBcosB=4cosB3sinB10 \sin B \cos B = 4 \cos B - 3 \sin B.

Step 5: Evaluate the given expression. The expression to evaluate is 3secB4cscB2\frac{3 \sec B-4 \csc B}{2}. Rewrite secB\sec B as 1cosB\frac{1}{\cos B} and cscB\csc B as 1sinB\frac{1}{\sin B}: 12(3cosB4sinB)\frac{1}{2} \left( \frac{3}{\cos B} - \frac{4}{\sin B} \right). Combine the terms inside the parenthesis by finding a common denominator: 12(3sinB4cosBsinBcosB)\frac{1}{2} \left( \frac{3 \sin B - 4 \cos B}{\sin B \cos B} \right).

From Step 4, we have 10sinBcosB=4cosB3sinB10 \sin B \cos B = 4 \cos B - 3 \sin B. Notice that the numerator in the expression we want to evaluate is 3sinB4cosB3 \sin B - 4 \cos B, which is the negative of the right side of the equation from Step 4. So, 3sinB4cosB=(4cosB3sinB)=10sinBcosB3 \sin B - 4 \cos B = -(4 \cos B - 3 \sin B) = -10 \sin B \cos B.

Substitute this back into the expression: 12(10sinBcosBsinBcosB)\frac{1}{2} \left( \frac{-10 \sin B \cos B}{\sin B \cos B} \right).

Since A is an acute angle, A(0,90)A \in (0, 90^\circ). Since A=3BA = 3B, 3B(0,90)3B \in (0, 90^\circ), which implies B(0,30)B \in (0, 30^\circ). For B(0,30)B \in (0, 30^\circ), sinB0\sin B \neq 0 and cosB0\cos B \neq 0. Therefore, sinBcosB0\sin B \cos B \neq 0. We can cancel sinBcosB\sin B \cos B from the numerator and denominator: 12(10)=5\frac{1}{2} (-10) = -5.