Question
Question: If $2sin^{-1}x = sin^{-1}(2x\sqrt{1-x^2})$, then x belongs to:...
If 2sin−1x=sin−1(2x1−x2), then x belongs to:

A
[-1, 1]
B
[-\frac{1}{\sqrt{2}}, 1]
C
[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]
D
[-1, \frac{1}{\sqrt{2}})
Answer
[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]
Explanation
Solution
Let x=sinθ, where θ∈[−2π,2π]. The equation 2sin−1x=sin−1(2x1−x2) transforms to 2θ=sin−1(sin(2θ)). The identity sin−1(sinϕ)=ϕ holds if and only if ϕ∈[−2π,2π]. Applying this to 2θ, we require 2θ∈[−2π,2π]. This implies θ∈[−4π,4π]. Since x=sinθ and sinθ is strictly increasing for θ∈[−2π,2π], the range for x is: x∈[sin(−4π),sin(4π)]=[−21,21].