Solveeit Logo

Question

Question: If $2sin^{-1}x = sin^{-1}(2x\sqrt{1-x^2})$, then x belongs to:...

If 2sin1x=sin1(2x1x2)2sin^{-1}x = sin^{-1}(2x\sqrt{1-x^2}), then x belongs to:

A

[-1, 1]

B

[-\frac{1}{\sqrt{2}}, 1]

C

[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]

D

[-1, \frac{1}{\sqrt{2}})

Answer

[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]

Explanation

Solution

Let x=sinθx = \sin\theta, where θ[π2,π2]\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]. The equation 2sin1x=sin1(2x1x2)2\sin^{-1}x = \sin^{-1}(2x\sqrt{1-x^2}) transforms to 2θ=sin1(sin(2θ))2\theta = \sin^{-1}(\sin(2\theta)). The identity sin1(sinϕ)=ϕ\sin^{-1}(\sin\phi) = \phi holds if and only if ϕ[π2,π2]\phi \in [-\frac{\pi}{2}, \frac{\pi}{2}]. Applying this to 2θ2\theta, we require 2θ[π2,π2]2\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]. This implies θ[π4,π4]\theta \in [-\frac{\pi}{4}, \frac{\pi}{4}]. Since x=sinθx = \sin\theta and sinθ\sin\theta is strictly increasing for θ[π2,π2]\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], the range for xx is: x[sin(π4),sin(π4)]=[12,12]x \in [\sin(-\frac{\pi}{4}), \sin(\frac{\pi}{4})] = [-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}].