Solveeit Logo

Question

Question: If 10 g of $V_2O_5$ is dissolved in acid and is reduced to $V^{2+}$ by zinc metal, how many mole $I_...

If 10 g of V2O5V_2O_5 is dissolved in acid and is reduced to V2+V^{2+} by zinc metal, how many mole I2I_2 could be reduced by the resulting solution if it is further oxidised to VO2+VO^{2+} ions?

[Assume no change in state of Zn2+Zn^{2+} ions] (V = 51, O = 16, I = 127) :

A

0.11 mole of I2I_2

B

0.22 mole of I2I_2

C

0.055 mole of I2I_2

D

0.44 mole of I2I_2

Answer

0.11 mole of I2I_2

Explanation

Solution

  1. Moles of Vanadium:

    • Molar mass of V2O5=2×51+5×16=102+80=182 g/molV_2O_5 = 2 \times 51 + 5 \times 16 = 102 + 80 = 182 \text{ g/mol}.
    • Moles of V2O5=10 g182 g/mol0.0549 molV_2O_5 = \frac{10 \text{ g}}{182 \text{ g/mol}} \approx 0.0549 \text{ mol}.
    • Since each mole of V2O5V_2O_5 contains 2 moles of V atoms, moles of V atoms present = 2×0.0549=0.1098 mol2 \times 0.0549 = 0.1098 \text{ mol}.
  2. First Reduction (V2O5V2+V_2O_5 \rightarrow V^{2+}):

    • In V2O5V_2O_5, the oxidation state of V is +5.
    • It is reduced to V2+V^{2+}.
    • So, the 0.1098 mol0.1098 \text{ mol} of V atoms initially at +5 are converted to 0.1098 mol0.1098 \text{ mol} of V2+V^{2+} ions.
  3. Second Oxidation (V2+VO2+V^{2+} \rightarrow VO^{2+}) and Reduction of I2I_2:

    • The V2+V^{2+} ions are now oxidized to VO2+VO^{2+} ions.
    • In VO2+VO^{2+}, the oxidation state of V is +4 (since O is -2, x+(2)=+2x=+4x + (-2) = +2 \Rightarrow x = +4).
    • The change in oxidation state for V is from +2 to +4. This means each V atom loses 2 electrons.
    • Total moles of electrons lost by V2+V^{2+} = Moles of V2+×change in O.S.V^{2+} \times \text{change in O.S.} per V atom =0.1098 mol×2=0.2196 mol electrons= 0.1098 \text{ mol} \times 2 = 0.2196 \text{ mol electrons}.
    • These electrons are used to reduce I2I_2. The reduction of I2I_2 to II^- is I2+2e2II_2 + 2e^- \rightarrow 2I^-.
    • Each mole of I2I_2 accepts 2 moles of electrons.
    • Moles of I2I_2 reduced = Total moles of electrons lost by VElectrons accepted per mole of I2=0.2196 mol2=0.1098 mol\frac{\text{Total moles of electrons lost by V}}{\text{Electrons accepted per mole of } I_2} = \frac{0.2196 \text{ mol}}{2} = 0.1098 \text{ mol}.
    • Rounding to two decimal places, this is approximately 0.11 mole.