Solveeit Logo

Question

Question: 1 g magnesium atoms in vapour phase absorb 50 kJ of energy to convert all Mg into Mg ions. The energ...

1 g magnesium atoms in vapour phase absorb 50 kJ of energy to convert all Mg into Mg ions. The energy absorbed is needed for the following changes:
Mg(g)Mg + (g)+e;ΔH=740 kJ mol - 1{\text{Mg(g)}} \to {\text{M}}{{\text{g}}^{\text{ + }}}{{(g) + e; \Delta H = }}740{\text{ kJ mo}}{{\text{l}}^{{\text{ - 1}}}}
Mg + (g)Mg2 + (g)+e;ΔH=1450kJmol - 1{\text{M}}{{\text{g}}^{\text{ + }}}{\text{(g)}} \to {\text{M}}{{\text{g}}^{{\text{2 + }}}}{{(g) + e; \Delta H = 1450 kJ mo}}{{\text{l}}^{{\text{ - 1}}}}
Find out the % of Mg + {\text{M}}{{\text{g}}^{\text{ + }}} and Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} in the final mixture.
(A) %Mg +  = 68.28%,%ofMg2 +  = 31.72%{{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 68}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 31}}{{.72\% }}
(B) %Mg +  = 58.28%,%ofMg2 +  = 41.72%{{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 58}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 41}}{{.72\% }}
(C) %Mg +  = 78.28%,%ofMg2 +  = 21.72%{{\% M}}{{\text{g}}^{\text{ + }}}{\text{ = 78}}{{.28\% , \% of M}}{{\text{g}}^{{\text{2 + }}}}{\text{ = 21}}{{.72\% }}
(D) None of these

Explanation

Solution

Magnesium is an element with symbol Mg and its atomic number is twelve. It is an element of group 2 that is of alkaline earth metals. It possesses the rank ninth among the most abundant elements in the universe.
The following formula is used to find the number of moles,
Moles = Given weightMolecular weight{\text{Moles = }}\dfrac{{{\text{Given weight}}}}{{{\text{Molecular weight}}}}

Complete Step by step solution:
The given weight of magnesium is 1 g. The atomic weight of magnesium is twenty-four. In order to calculate the moles of magnesium, the formula to be used is as follows,
Moles of magnesium = Given weight of magnesiumMolecular weight of magnesium = 124{\text{Moles of magnesium = }}\dfrac{{{\text{Given weight of magnesium}}}}{{{\text{Molecular weight of magnesium}}}}{\text{ = }}\dfrac{1}{{24}} moles
124\dfrac{1}{{24}} of magnesium gets converted into Mg + {\text{M}}{{\text{g}}^{\text{ + }}} and Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} .
Let the moles of magnesium converted into Mg + {\text{M}}{{\text{g}}^{\text{ + }}} be x.
Let the moles of magnesium converted into Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} be y.
The total moles including Mg + {\text{M}}{{\text{g}}^{\text{ + }}} and Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} is 124\dfrac{1}{{24}} moles.
Therefore, x+y=124x + y = \dfrac{1}{{24}} …(i)
Also, as magnesium gets converted into Mg + {\text{M}}{{\text{g}}^{\text{ + }}} , 740 kJ of energy is consumed and when it transforms to Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} , 1450 kJ of energy is used. But magnesium atoms absorb only 50 kJ of energy to convert all Mg into Mg ions. Hence the equation obtained is as follows,
50 = 740x + 2190y50{\text{ }} = {\text{ }}740x{\text{ }} + {\text{ }}2190y …(ii)
From equations (i) and (ii), we get the values of x and y as,
x = 2.845×1022.845 \times {10^{ - 2}}
y = 1.322×1021.322 \times {10^{ - 2}}
Hence the moles of Mg + {\text{M}}{{\text{g}}^{\text{ + }}} is 2.845×1022.845 \times {10^{ - 2}} and the moles of Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} is 1.322×1021.322 \times {10^{ - 2}} .
The percent of Mg+ = Moles of Mg+Total moles × 100 = 2.845×102124 × 100 = 68.28%{\text{The percent of M}}{{\text{g}}^ + }{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^ + }}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{2.845 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 68}}{{.28\% }}
Thus, the percent of Mg + {\text{M}}{{\text{g}}^{\text{ + }}} is 68.28%{\text{68}}{{.28\% }} .
The percent of Mg2+ = Moles of Mg2+Total moles × 100 = 1.322×102124 × 100 = 31.72%{\text{The percent of M}}{{\text{g}}^{2 + }}{\text{ = }}\dfrac{{{\text{Moles of M}}{{\text{g}}^{2 + }}}}{{{\text{Total moles}}}}{\text{ }} \times {\text{ 100 = }}\dfrac{{1.322 \times {{10}^{ - 2}}}}{{\dfrac{1}{{24}}}}{\text{ }} \times {\text{ }}100{\text{ = 31}}{{.72\% }}
Thus, the percent of Mg2 + {\text{M}}{{\text{g}}^{{\text{2 + }}}} is 31.72%{\text{31}}{{.72\% }} .
Hence, option A is correct.

Note:
After iron and aluminium, magnesium is the most commonly used metal. In super strong, lightweight metals and alloys, magnesium is used. Alloys are mixtures of metals in definite proportion.