Solveeit Logo

Question

Question: \[1 + \frac{(\log_{e}n)^{2}}{2!} + \frac{(\log_{e}n)^{4}}{4!} + .... =\]...

1+(logen)22!+(logen)44!+....=1 + \frac{(\log_{e}n)^{2}}{2!} + \frac{(\log_{e}n)^{4}}{4!} + .... =

A

nn

B

1/n1/n

C

12(n+n1)\frac{1}{2}(n + n^{- 1})

D

12(en+en)\frac{1}{2}(e^{n} + e^{- n})

Answer

12(n+n1)\frac{1}{2}(n + n^{- 1})

Explanation

Solution

loge2\log_{e}2=loge4\log_{e}4.