Solveeit Logo

Question

Question: \[1 + \frac{a - bx}{1!} + \frac{(a - bx)^{2}}{2!} + \frac{(a - bx)^{3}}{3!} + ....\infty =\]...

1+abx1!+(abx)22!+(abx)33!+....=1 + \frac{a - bx}{1!} + \frac{(a - bx)^{2}}{2!} + \frac{(a - bx)^{3}}{3!} + ....\infty =

A

eabxe^{a - bx}

B

eabx1e^{a - bx} - 1

C

1+aloge(abx)1 + a\log_{e}(a - bx)

D

ebxe^{- bx}

Answer

eabxe^{a - bx}

Explanation

Solution

(1+3)loge3+1+322!(loge3)2+1+333!(loge3)3+.....=(1 + 3)\log_{e}3 + \frac{1 + 3^{2}}{2!}(\log_{e}3)^{2} + \frac{1 + 3^{3}}{3!}(\log_{e}3)^{3} + .....\infty =.