Solveeit Logo

Question

Question: \[1 + \frac{3}{1!} + \frac{5}{2!} + \frac{7}{3!} + ....\infty =\]...

1+31!+52!+73!+....=1 + \frac{3}{1!} + \frac{5}{2!} + \frac{7}{3!} + ....\infty =

A

ee

B

2e2e

C

3e3e

D

4e4e

Answer

3e3e

Explanation

Solution

loge(n2+1n2)\log_{e}\left( \frac{n^{2} + 1}{n^{2}} \right)

loge(n2n21)\log_{e}\left( \frac{n^{2}}{n^{2} - 1} \right)

mnm+n+13(mnm+n)3+15(mnm+n)5+......=\frac{m - n}{m + n} + \frac{1}{3}\left( \frac{m - n}{m + n} \right)^{3} + \frac{1}{5}\left( \frac{m - n}{m + n} \right)^{5} + ......\infty =.