Solveeit Logo

Question

Question: \[1 + \frac{2^{4}}{2!} + \frac{3^{4}}{3!} + \frac{4^{4}}{4!} + .....\infty =\]...

1+242!+343!+444!+.....=1 + \frac{2^{4}}{2!} + \frac{3^{4}}{3!} + \frac{4^{4}}{4!} + .....\infty =

A

5e5e

B

ee

C

15e15e

D

2e2e

Answer

15e15e

Explanation

Solution

41.362.4+125.7146.8+.....=\frac{4}{1.3} - \frac{6}{2.4} + \frac{12}{5.7} - \frac{14}{6.8} + .....\infty =

loge3\log_{e}3

loge2\log_{e}2

2loge22\log_{e}2

logexloge(x1)=\log_{e}x - \log_{e}(x - 1) =

=1x12x2+13x3.....\frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{3x^{3}} - .....\infty

= 1x+12x2+13x3+.....\frac{1}{x} + \frac{1}{2x^{2}} + \frac{1}{3x^{3}} + .....\infty.